0xnu commited on
Commit
79adec6
1 Parent(s): edbbc61

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -10
README.md CHANGED
@@ -117,30 +117,26 @@ embeddings = model.encode(sentences, convert_to_tensor=True)
117
  def find_closest_sentence(query_embedding, sentence_embeddings, sentences):
118
  # Compute cosine similarities
119
  cosine_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)[0]
120
-
121
  # Find the position of the highest score
122
  best_match_index = torch.argmax(cosine_scores).item()
123
-
124
  return sentences[best_match_index], cosine_scores[best_match_index].item()
125
 
126
  query = "Kini olu ilu England"
127
  query_embedding = model.encode(query, convert_to_tensor=True)
128
-
129
  closest_sentence, similarity_score = find_closest_sentence(query_embedding, embeddings, sentences)
130
 
131
- print(f"Query: {query}")
132
- print(f"Closest matching sentence: {closest_sentence}")
133
- print(f"Similarity score: {similarity_score:.4f}")
134
 
135
  # You can also try with a new sentence not in the original list
136
  new_query = "Kini oruko oba to wa ni ilu Oyo?"
137
  new_query_embedding = model.encode(new_query, convert_to_tensor=True)
138
-
139
  closest_sentence, similarity_score = find_closest_sentence(new_query_embedding, embeddings, sentences)
140
 
141
- print(f"\nNew Query: {new_query}")
142
- print(f"Closest matching sentence: {closest_sentence}")
143
- print(f"Similarity score: {similarity_score:.4f}")
144
  ```
145
 
146
  ### License
 
117
  def find_closest_sentence(query_embedding, sentence_embeddings, sentences):
118
  # Compute cosine similarities
119
  cosine_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)[0]
 
120
  # Find the position of the highest score
121
  best_match_index = torch.argmax(cosine_scores).item()
 
122
  return sentences[best_match_index], cosine_scores[best_match_index].item()
123
 
124
  query = "Kini olu ilu England"
125
  query_embedding = model.encode(query, convert_to_tensor=True)
 
126
  closest_sentence, similarity_score = find_closest_sentence(query_embedding, embeddings, sentences)
127
 
128
+ print(f"Ibeere: {query}")
129
+ print(f"Gbolohun ti o jọ mọ julọ: {closest_sentence}")
130
+ print(f"Iwọn ijọra: {similarity_score:.4f}")
131
 
132
  # You can also try with a new sentence not in the original list
133
  new_query = "Kini oruko oba to wa ni ilu Oyo?"
134
  new_query_embedding = model.encode(new_query, convert_to_tensor=True)
 
135
  closest_sentence, similarity_score = find_closest_sentence(new_query_embedding, embeddings, sentences)
136
 
137
+ print(f"\nIbeere Tuntun: {new_query}")
138
+ print(f"Gbolohun ti o jọ mọ julọ: {closest_sentence}")
139
+ print(f"Iwọn ijọra: {similarity_score:.4f}")
140
  ```
141
 
142
  ### License