1aurent commited on
Commit
f215254
1 Parent(s): 040af06

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -1
README.md CHANGED
@@ -1,8 +1,109 @@
1
  ---
2
  tags:
3
  - image-classification
 
4
  - timm
 
 
 
 
 
5
  library_name: timm
6
- license: apache-2.0
 
7
  ---
 
8
  # Model card for wide_resnet50_2.tiatoolbox-pcam
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
  - image-classification
4
+ - feature-extraction
5
  - timm
6
+ - biology
7
+ - cancer
8
+ - histology
9
+ - TIA
10
+ - tiatoolbox
11
  library_name: timm
12
+ pipeline_tag: image-classification
13
+ license: cc0-1.0
14
  ---
15
+
16
  # Model card for wide_resnet50_2.tiatoolbox-pcam
17
+
18
+ A Wide-ResNet-B image classification model. \
19
+ Trained by [Tissue Image Analytics (TIA) Centre](https://warwick.ac.uk/fac/cross_fac/tia/) on "pcam" histology patches.
20
+
21
+ ![](https://raw.githubusercontent.com/TissueImageAnalytics/tiatoolbox/develop/docs/tiatoolbox-logo.png)
22
+
23
+ ## Model Details
24
+
25
+ - **Model Type:** Image classification / Feature backbone
26
+ - **Model Stats:**
27
+ - Params (M): 66.9
28
+ - Image size: 224 x 224 x 3
29
+ - **Dataset**: [Patch Camelyon (PCam)](https://github.com/basveeling/pcam/)
30
+ - **Original:** https://github.com/TissueImageAnalytics/tiatoolbox
31
+ - **License**: [Creative Commons Zero v1.0 Universal](https://creativecommons.org/publicdomain/zero/1.0/legalcode)
32
+
33
+ ## Model Usage
34
+
35
+ ### Image Classification
36
+
37
+ ```python
38
+ from urllib.request import urlopen
39
+ from PIL import Image
40
+ import timm
41
+
42
+ # get example histology image
43
+ img = Image.open(
44
+ urlopen(
45
+ "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
46
+ )
47
+ )
48
+
49
+ # load model from the hub
50
+ model = timm.create_model(
51
+ model_name="hf-hub:1aurent/wide_resnet50_2.tiatoolbox-pcam",
52
+ pretrained=True,
53
+ ).eval()
54
+
55
+ # get model specific transforms (normalization, resize)
56
+ data_config = timm.data.resolve_model_data_config(model)
57
+ transforms = timm.data.create_transform(**data_config, is_training=False)
58
+
59
+ data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
60
+ output = model(data) # output is a (batch_size, num_features) shaped tensor
61
+ ```
62
+
63
+ ### Image Embeddings
64
+
65
+ ```python
66
+ from urllib.request import urlopen
67
+ from PIL import Image
68
+ import timm
69
+
70
+ # get example histology image
71
+ img = Image.open(
72
+ urlopen(
73
+ "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
74
+ )
75
+ )
76
+
77
+ # load model from the hub
78
+ model = timm.create_model(
79
+ model_name="hf-hub:1aurent/wide_resnet50_2.tiatoolbox-pcam",
80
+ pretrained=True,
81
+ num_classes=0,
82
+ ).eval()
83
+
84
+ # get model specific transforms (normalization, resize)
85
+ data_config = timm.data.resolve_model_data_config(model)
86
+ transforms = timm.data.create_transform(**data_config, is_training=False)
87
+
88
+ data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
89
+ output = model(data) # output is a (batch_size, num_features) shaped tensor
90
+ ```
91
+
92
+ ## Citation
93
+
94
+ ```bibtex
95
+ @article{Pocock2022,
96
+ author = {Pocock, Johnathan and Graham, Simon and Vu, Quoc Dang and Jahanifar, Mostafa and Deshpande, Srijay and Hadjigeorghiou, Giorgos and Shephard, Adam and Bashir, Raja Muhammad Saad and Bilal, Mohsin and Lu, Wenqi and Epstein, David and Minhas, Fayyaz and Rajpoot, Nasir M and Raza, Shan E Ahmed},
97
+ doi = {10.1038/s43856-022-00186-5},
98
+ issn = {2730-664X},
99
+ journal = {Communications Medicine},
100
+ month = {sep},
101
+ number = {1},
102
+ pages = {120},
103
+ publisher = {Springer US},
104
+ title = {{TIAToolbox as an end-to-end library for advanced tissue image analytics}},
105
+ url = {https://www.nature.com/articles/s43856-022-00186-5},
106
+ volume = {2},
107
+ year = {2022}
108
+ }
109
+ ```