Model save
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: finetuned-FER2013
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.6788575409265064
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# finetuned-FER2013
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8812
|
36 |
+
- Accuracy: 0.6789
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-06
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 20
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.5466 | 1.0 | 202 | 1.5022 | 0.4500 |
|
71 |
+
| 1.3372 | 2.0 | 404 | 1.1727 | 0.5632 |
|
72 |
+
| 1.2372 | 3.0 | 606 | 1.0636 | 0.6075 |
|
73 |
+
| 1.2096 | 4.0 | 808 | 1.0200 | 0.6116 |
|
74 |
+
| 1.145 | 5.0 | 1010 | 0.9769 | 0.6325 |
|
75 |
+
| 1.1589 | 6.0 | 1212 | 0.9515 | 0.6405 |
|
76 |
+
| 1.0752 | 7.0 | 1414 | 0.9395 | 0.6458 |
|
77 |
+
| 1.0524 | 8.0 | 1616 | 0.9331 | 0.6458 |
|
78 |
+
| 1.0829 | 9.0 | 1818 | 0.9173 | 0.6573 |
|
79 |
+
| 1.0219 | 10.0 | 2020 | 0.9114 | 0.6597 |
|
80 |
+
| 0.9986 | 11.0 | 2222 | 0.9034 | 0.6580 |
|
81 |
+
| 1.013 | 12.0 | 2424 | 0.9004 | 0.6656 |
|
82 |
+
| 1.0133 | 13.0 | 2626 | 0.8940 | 0.6628 |
|
83 |
+
| 1.0064 | 14.0 | 2828 | 0.8916 | 0.6649 |
|
84 |
+
| 0.9858 | 15.0 | 3030 | 0.8882 | 0.6733 |
|
85 |
+
| 0.9863 | 16.0 | 3232 | 0.8850 | 0.6740 |
|
86 |
+
| 1.0058 | 17.0 | 3434 | 0.8856 | 0.6747 |
|
87 |
+
| 0.9637 | 18.0 | 3636 | 0.8852 | 0.6722 |
|
88 |
+
| 0.9803 | 19.0 | 3838 | 0.8829 | 0.6754 |
|
89 |
+
| 0.9356 | 20.0 | 4040 | 0.8812 | 0.6789 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.35.2
|
95 |
+
- Pytorch 2.1.0+cu121
|
96 |
+
- Datasets 2.15.0
|
97 |
+
- Tokenizers 0.15.0
|