3una commited on
Commit
f3fbb51
1 Parent(s): 4121dd2

Model save

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: finetuned-FER2013
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.6788575409265064
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # finetuned-FER2013
32
+
33
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8812
36
+ - Accuracy: 0.6789
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-06
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 20
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.5466 | 1.0 | 202 | 1.5022 | 0.4500 |
71
+ | 1.3372 | 2.0 | 404 | 1.1727 | 0.5632 |
72
+ | 1.2372 | 3.0 | 606 | 1.0636 | 0.6075 |
73
+ | 1.2096 | 4.0 | 808 | 1.0200 | 0.6116 |
74
+ | 1.145 | 5.0 | 1010 | 0.9769 | 0.6325 |
75
+ | 1.1589 | 6.0 | 1212 | 0.9515 | 0.6405 |
76
+ | 1.0752 | 7.0 | 1414 | 0.9395 | 0.6458 |
77
+ | 1.0524 | 8.0 | 1616 | 0.9331 | 0.6458 |
78
+ | 1.0829 | 9.0 | 1818 | 0.9173 | 0.6573 |
79
+ | 1.0219 | 10.0 | 2020 | 0.9114 | 0.6597 |
80
+ | 0.9986 | 11.0 | 2222 | 0.9034 | 0.6580 |
81
+ | 1.013 | 12.0 | 2424 | 0.9004 | 0.6656 |
82
+ | 1.0133 | 13.0 | 2626 | 0.8940 | 0.6628 |
83
+ | 1.0064 | 14.0 | 2828 | 0.8916 | 0.6649 |
84
+ | 0.9858 | 15.0 | 3030 | 0.8882 | 0.6733 |
85
+ | 0.9863 | 16.0 | 3232 | 0.8850 | 0.6740 |
86
+ | 1.0058 | 17.0 | 3434 | 0.8856 | 0.6747 |
87
+ | 0.9637 | 18.0 | 3636 | 0.8852 | 0.6722 |
88
+ | 0.9803 | 19.0 | 3838 | 0.8829 | 0.6754 |
89
+ | 0.9356 | 20.0 | 4040 | 0.8812 | 0.6789 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.35.2
95
+ - Pytorch 2.1.0+cu121
96
+ - Datasets 2.15.0
97
+ - Tokenizers 0.15.0