File size: 10,185 Bytes
8dfb676
 
4d0f481
 
 
 
 
 
 
 
8dfb676
 
01d21d9
 
 
8dfb676
fe7c963
d7a54aa
8dfb676
01d21d9
 
 
 
 
 
8dfb676
 
3fc750b
8dfb676
b584709
8dfb676
b6c58f8
b626a37
8dfb676
b6c58f8
b626a37
8dfb676
b6c58f8
3fc750b
 
b6c58f8
b626a37
8dfb676
b6c58f8
b626a37
8dfb676
c829d50
8dfb676
4d0f481
8dfb676
01d21d9
819ffe2
01d21d9
fd0ddc6
f88bbd3
 
b626a37
 
 
 
 
 
 
 
8dfb676
f88bbd3
 
4d0f481
8dfb676
 
a1d11bb
 
 
4d0f481
8dfb676
1f30c1b
7f21993
42e56c1
4d0f481
8dfb676
1f30c1b
 
914de84
 
 
5df2e08
1f30c1b
 
914de84
5df2e08
1f30c1b
7f21993
 
914de84
8dfb676
 
4d0f481
8dfb676
4d0f481
 
 
8dfb676
4d0f481
 
 
 
 
 
 
 
8dfb676
4d0f481
 
8dfb676
4d0f481
 
 
 
 
 
 
 
 
8dfb676
4d0f481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c8a23
4d0f481
 
 
d9c8a23
4d0f481
d9c8a23
 
4d0f481
 
 
d9c8a23
4d0f481
 
d9c8a23
4d0f481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0ff08
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
library_name: transformers
license: mit
language:
- vi
- en
- zh
base_model:
- OpenGVLab/InternVL2_5-1B
pipeline_tag: image-text-to-text
---

<div align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/-G297bBqMzYvTbD6_Bkd9.png" width="500"/>
</div>

# Vintern-1B-v3.5 ❄️ 
We introduce **Vintern-1B-v3.5**, the latest version in the Vintern series, offering significant improvements over v2 across all evaluation benchmarks. This model has been fine-tuned from **InternVL2.5-1B**, which already good in Vietnamese 🇻🇳 tasks because it used [Viet-ShareGPT-4o-Text-VQA](https://huggingface.co/datasets/5CD-AI/Viet-ShareGPT-4o-Text-VQA) data during its fine-tuning process by the InternVL 2.5 [1] team.

<div align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/a1V1DA1o4Gf_MJblWTz-L.png" width="500"/>
</div>
<div align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/36jb5bgyYCoVKx3NE8Iuv.png" width="500"/>
</div>


To further enhance its performance in Vietnamese while maintaining good capabilities on existing English datasets, **Vintern-1B-v3.5** has been fine-tuned using a vast amount of Vietnamese-specific data. This results in a model that is exceptionally powerful in text recognition, OCR, and understanding Vietnam-specific documents.

# Highlights 🌟

- **Top Quality for Vietnamese Texts**
Vintern-1B-v3.5 is one of the best models in its class (1B parameters) for understanding and processing Vietnamese documents.

- **Better Extraction and Understanding**
The model is great at handling invoices, legal texts, handwriting, and tables.

- **Improved Prompt Understanding**
It can understand more complex prompts compared to v2, making it easier to work with.

- **Runs on Affordable Hardware**
You can run the model on Google Colab with a T4 GPU, making it easy to use without expensive devices.

- **Easy to Fine-tune**
The model can be customized for specific tasks with minimal effort.

[**🤗 HF Demo 🤗**](https://huggingface.co/spaces/khang119966/Vintern-1B-v3.5-Demo)

## Benchmarks 📈

<div align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/D5MkUZqhOkXxZUrTT7jRA.png" width="400"/>
</div>

<div align="center">
  
| Benchmark     | InternVL2_5 1B | Vintern-1B-v2 | Vintern-1B-v3.5 |
|:-------------:|:--------------:|:-------------:|:---------------:|
| vi-MTVQA      |      24.8      |     37.4      |     41.9        |
| DocVQAtest    |      84.8      |    72.5      |      78.8       |
| InfoVQAtest   |      56.0      |    38.9      |      46.4      |
| TextVQAval    |      72.0      |    64.0      |      68.2       |
| ChartQAtest   |      75.9      |    34.1      |      60.0       |
| OCRBench      |      785       |     628       |      706        |

</div>

## Examples


<div style="display: flex; justify-content: center; align-items: center;">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/1yos0APs6laTCAGhUbN9n.png" width="300" style="margin-right: 10px;"/>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/L5n35_3sz_Wp9fo0C7snq.png" width="300"/>
</div>

<div style="display: flex; justify-content: center; align-items: center;">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/u4huu2pWrZpYxPT1Fb-iW.png" width="300" style="margin-right: 10px;"/>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/N_tT8gSLayhrfrVTMCeT9.png" width="400"/>
</div>

<div style="display: flex; justify-content: center; align-items: center;">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/wUM70ifQSpdbO_dLH1TLO.png" width="300" style="margin-right: 10px;"/>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/yxWlGKMP7458UbtIzosUK.png" width="300"/>
</div>

<!-- <div style="display: flex; justify-content: center; align-items: center;">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/SH7-fvyZok9Kqm1XoD4E0.png" width="200" style="margin-right: 10px;"/>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/6gyL4ymSWyuHwfy9dVVju.png" width="500"/>
</div>
 -->
<div style="display: flex; justify-content: center; align-items: center;">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/s4j3m7iUqj9LUVtHvdU2x.png" width="300" style="margin-right: 10px;"/>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/OD6igRwEmnKt92wy4dCzx.png" width="300"/>
</div>


## Quickstart

Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
To run inference using the model, follow the steps outlined in our Colab inference notebook
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ZD1oB56PF0lF66RCuTVJYLTEV0tM3CFf?usp=sharing)

```python
import numpy as np
import torch
import torchvision.transforms as T
# from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

model = AutoModel.from_pretrained(
    "5CD-AI/Vintern-1B-v3_5",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    use_flash_attn=False,
).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, use_fast=False)

test_image = 'test-image.jpg'

pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens= 1024, do_sample=False, num_beams = 3, repetition_penalty=2.5)

question = '<image>\nTrích xuất thông tin chính trong ảnh và trả về dạng markdown.'

response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

#question = "Câu hỏi khác ......"
#response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
#print(f'User: {question}\nAssistant: {response}')
```

## Citation 

```
@misc{doan2024vintern1befficientmultimodallarge,
      title={Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese}, 
      author={Khang T. Doan and Bao G. Huynh and Dung T. Hoang and Thuc D. Pham and Nhat H. Pham and Quan T. M. Nguyen and Bang Q. Vo and Suong N. Hoang},
      year={2024},
      eprint={2408.12480},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2408.12480}, 
}
```

## Reference

[1] Z. Chen et al., ‘Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling’, arXiv preprint arXiv:2412. 05271, 2024.