File size: 4,905 Bytes
6df101e 737ca58 94d25a2 c8d97be 6df101e 061a68a 6df101e 061a68a 529b3c1 061a68a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
library_name: transformers
tags: []
pipeline_tag: fill-mask
widget:
- text: "shop làm ăn như cái <mask>"
- text: "hag từ Quảng <mask> kực nét"
- text: "Set xinh quá, <mask> bèo nhèo"
- text: "đúng nhận sai <mask>"
---
# 5CD-AI/viso-twhin-bert-large
## Overview
<!-- Provide a quick summary of what the model is/does. -->
We reduce TwHIN-BERT's vocabulary size to 20k on the UIT dataset and continue pretraining for 10 epochs.
Here are the results on 4 downstream tasks on Vietnamese social media texts, including Emotion Recognition(UIT-VSMEC), Hate Speech Detection(UIT-HSD), Spam Reviews Detection(ViSpamReviews), Hate Speech Spans Detection(ViHOS):
<table>
<tr align="center">
<td rowspan=2><b>Model</td>
<td rowspan=2><b>Avg</td>
<td colspan=3><b>Emotion Recognition</td>
<td colspan=3><b>Hate Speech Detection</td>
<td colspan=3><b>Spam Reviews Detection</td>
<td colspan=3><b>Hate Speech Spans Detection</td>
</tr>
<tr align="center">
<td><b>Acc</td>
<td><b>WF1</td>
<td><b>MF1</td>
<td><b>Acc</td>
<td><b>WF1</td>
<td><b>MF1</td>
<td><b>Acc</td>
<td><b>WF1</td>
<td><b>MF1</td>
<td><b>Acc</td>
<td><b>WF1</td>
<td><b>MF1</td>
</tr>
<tr align="center">
<td align="left">viBERT</td>
<td>78.16</td>
<td>61.91</td>
<td>61.98</td>
<td>59.7</td>
<td>85.34</td>
<td>85.01</td>
<td>62.07</td>
<td>89.93</td>
<td>89.79</td>
<td>76.8</td>
<td>90.42</td>
<td>90.45</td>
<td>84.55</td>
</tr>
<tr align="center">
<td align="left">vELECTRA</td>
<td>79.23</td>
<td>64.79</td>
<td>64.71</td>
<td>61.95</td>
<td>86.96</td>
<td>86.37</td>
<td>63.95</td>
<td>89.83</td>
<td>89.68</td>
<td>76.23</td>
<td>90.59</td>
<td>90.58</td>
<td>85.12</td>
</tr>
<tr align="center">
<td align="left">PhoBERT-Base </td>
<td>79.3</td>
<td>63.49</td>
<td>63.36</td>
<td>61.41</td>
<td>87.12</td>
<td>86.81</td>
<td>65.01</td>
<td>89.83</td>
<td>89.75</td>
<td>76.18</td>
<td>91.32</td>
<td>91.38</td>
<td>85.92</td>
</tr>
<tr align="center">
<td align="left">PhoBERT-Large</td>
<td>79.82</td>
<td>64.71</td>
<td>64.66</td>
<td>62.55</td>
<td>87.32</td>
<td>86.98</td>
<td>65.14</td>
<td>90.12</td>
<td>90.03</td>
<td>76.88</td>
<td>91.44</td>
<td>91.46</td>
<td>86.56</td>
</tr>
<tr align="center">
<td align="left">ViSoBERT</td>
<td>81.58</td>
<td>68.1</td>
<td>68.37</td>
<td>65.88</td>
<td>88.51</td>
<td>88.31</td>
<td>68.77</td>
<td>90.99</td>
<td>90.92</td>
<td>79.06</td>
<td>91.62</td>
<td>91.57</td>
<td>86.8</td>
</tr>
<tr align="center">
<td align="left">visobert-14gb-corpus</td>
<td>82.2</td>
<td>68.69</td>
<td>68.75</td>
<td>66.03</td>
<td>88.79</td>
<td>88.6</td>
<td>69.57</td>
<td>91.02</td>
<td>90.88</td>
<td>77.13</td>
<td>93.69</td>
<td>93.63</td>
<td>89.66</td>
</tr>
<tr align="center">
<td align="left">viso-twhin-bert-large</td>
<td><b>83.87</td>
<td><b>73.45</td>
<td><b>73.14</td>
<td><b>70.99</td>
<td><b>88.86</td>
<td><b>88.8</td>
<td><b>70.81</td>
<td><b>91.6</td>
<td><b>91.47</td>
<td><b>79.07</td>
<td><b>94.08</td>
<td><b>93.96</td>
<td><b>90.22</td>
</tr>
</div>
</table>
## Usage (HuggingFace Transformers)
Install `transformers` package:
pip install transformers
Then you can use this model for fill-mask task like this:
```python
from transformers import pipeline
model_path = "5CD-AI/viso-twhin-bert-large"
mask_filler = pipeline("fill-mask", model_path)
mask_filler("đúng nhận sai <mask>", top_k=10)
``` |