File size: 62,959 Bytes
d8b057b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 |
2023-04-02 19:19:00,193 INFO **********************Start logging********************** 2023-04-02 19:19:00,193 INFO CUDA_VISIBLE_DEVICES=ALL 2023-04-02 19:19:00,194 INFO total_batch_size: 16 2023-04-02 19:19:00,194 INFO cfg_file cfgs/scannet_models/CAGroup3D.yaml 2023-04-02 19:19:00,195 INFO batch_size 16 2023-04-02 19:19:00,196 INFO epochs 9 2023-04-02 19:19:00,196 INFO workers 4 2023-04-02 19:19:00,197 INFO extra_tag cagroup3d-win10-scannet-train 2023-04-02 19:19:00,197 INFO ckpt ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth 2023-04-02 19:19:00,198 INFO pretrained_model ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth 2023-04-02 19:19:00,199 INFO launcher pytorch 2023-04-02 19:19:00,199 INFO tcp_port 18888 2023-04-02 19:19:00,200 INFO sync_bn False 2023-04-02 19:19:00,200 INFO fix_random_seed True 2023-04-02 19:19:00,201 INFO ckpt_save_interval 1 2023-04-02 19:19:00,201 INFO max_ckpt_save_num 30 2023-04-02 19:19:00,202 INFO merge_all_iters_to_one_epoch False 2023-04-02 19:19:00,202 INFO set_cfgs None 2023-04-02 19:19:00,203 INFO max_waiting_mins 0 2023-04-02 19:19:00,203 INFO start_epoch 0 2023-04-02 19:19:00,204 INFO num_epochs_to_eval 0 2023-04-02 19:19:00,204 INFO save_to_file False 2023-04-02 19:19:00,205 INFO cfg.ROOT_DIR: C:\CITYU\CS5182\proj\CAGroup3D 2023-04-02 19:19:00,205 INFO cfg.LOCAL_RANK: 0 2023-04-02 19:19:00,206 INFO cfg.CLASS_NAMES: ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin'] 2023-04-02 19:19:00,207 INFO cfg.DATA_CONFIG = edict() 2023-04-02 19:19:00,207 INFO cfg.DATA_CONFIG.DATASET: ScannetDataset 2023-04-02 19:19:00,208 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/scannet_data/ScanNetV2 2023-04-02 19:19:00,208 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: scannet_processed_data_v0_5_0 2023-04-02 19:19:00,209 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10] 2023-04-02 19:19:00,209 INFO cfg.DATA_CONFIG.DATA_SPLIT = edict() 2023-04-02 19:19:00,210 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train 2023-04-02 19:19:00,210 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val 2023-04-02 19:19:00,211 INFO cfg.DATA_CONFIG.REPEAT = edict() 2023-04-02 19:19:00,211 INFO cfg.DATA_CONFIG.REPEAT.train: 10 2023-04-02 19:19:00,212 INFO cfg.DATA_CONFIG.REPEAT.test: 1 2023-04-02 19:19:00,213 INFO cfg.DATA_CONFIG.INFO_PATH = edict() 2023-04-02 19:19:00,213 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['scannet_infos_train.pkl'] 2023-04-02 19:19:00,214 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['scannet_infos_val.pkl'] 2023-04-02 19:19:00,214 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points', 'instance_mask', 'semantic_mask'] 2023-04-02 19:19:00,215 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True 2023-04-02 19:19:00,215 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict() 2023-04-02 19:19:00,216 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 19:19:00,216 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}, {'NAME': 'point_seg_class_mapping', 'valid_cat_ids': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39], 'max_cat_id': 40}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['x', 'y']}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.087266, 0.087266]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.9, 1.1]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}] 2023-04-02 19:19:00,217 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict() 2023-04-02 19:19:00,218 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 19:19:00,218 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}] 2023-04-02 19:19:00,219 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR = edict() 2023-04-02 19:19:00,219 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 19:19:00,220 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}] 2023-04-02 19:19:00,220 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict() 2023-04-02 19:19:00,221 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding 2023-04-02 19:19:00,222 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b'] 2023-04-02 19:19:00,222 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b'] 2023-04-02 19:19:00,223 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}] 2023-04-02 19:19:00,223 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/scannet_dataset.yaml 2023-04-02 19:19:00,224 INFO cfg.VOXEL_SIZE: 0.02 2023-04-02 19:19:00,224 INFO cfg.N_CLASSES: 18 2023-04-02 19:19:00,224 INFO cfg.SEMANTIC_THR: 0.15 2023-04-02 19:19:00,225 INFO cfg.MODEL = edict() 2023-04-02 19:19:00,225 INFO cfg.MODEL.NAME: CAGroup3D 2023-04-02 19:19:00,226 INFO cfg.MODEL.VOXEL_SIZE: 0.02 2023-04-02 19:19:00,226 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05 2023-04-02 19:19:00,227 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02 2023-04-02 19:19:00,227 INFO cfg.MODEL.SEMANTIC_THR: 0.15 2023-04-02 19:19:00,227 INFO cfg.MODEL.BACKBONE_3D = edict() 2023-04-02 19:19:00,228 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet 2023-04-02 19:19:00,228 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3 2023-04-02 19:19:00,229 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64 2023-04-02 19:19:00,229 INFO cfg.MODEL.DENSE_HEAD = edict() 2023-04-02 19:19:00,230 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead 2023-04-02 19:19:00,230 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512] 2023-04-02 19:19:00,231 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64 2023-04-02 19:19:00,231 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15 2023-04-02 19:19:00,232 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02 2023-04-02 19:19:00,233 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 18 2023-04-02 19:19:00,233 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 6 2023-04-02 19:19:00,233 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9 2023-04-02 19:19:00,234 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: False 2023-04-02 19:19:00,234 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False 2023-04-02 19:19:00,235 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3 2023-04-02 19:19:00,235 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER = edict() 2023-04-02 19:19:00,236 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner 2023-04-02 19:19:00,237 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27 2023-04-02 19:19:00,237 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18 2023-04-02 19:19:00,237 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4 2023-04-02 19:19:00,238 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict() 2023-04-02 19:19:00,239 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss 2023-04-02 19:19:00,239 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04 2023-04-02 19:19:00,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum 2023-04-02 19:19:00,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 1.0 2023-04-02 19:19:00,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict() 2023-04-02 19:19:00,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss 2023-04-02 19:19:00,242 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: False 2023-04-02 19:19:00,242 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0 2023-04-02 19:19:00,243 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict() 2023-04-02 19:19:00,243 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01 2023-04-02 19:19:00,244 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000 2023-04-02 19:19:00,244 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5 2023-04-02 19:19:00,245 INFO cfg.MODEL.ROI_HEAD = edict() 2023-04-02 19:19:00,246 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead 2023-04-02 19:19:00,246 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 18 2023-04-02 19:19:00,247 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3] 2023-04-02 19:19:00,247 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7 2023-04-02 19:19:00,247 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02 2023-04-02 19:19:00,248 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2 2023-04-02 19:19:00,248 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]] 2023-04-02 19:19:00,249 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 6 2023-04-02 19:19:00,249 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: False 2023-04-02 19:19:00,250 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128 2023-04-02 19:19:00,250 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9 2023-04-02 19:19:00,251 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3 2023-04-02 19:19:00,251 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5 2023-04-02 19:19:00,251 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False 2023-04-02 19:19:00,252 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: False 2023-04-02 19:19:00,252 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False 2023-04-02 19:19:00,253 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True 2023-04-02 19:19:00,253 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True 2023-04-02 19:19:00,254 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict() 2023-04-02 19:19:00,254 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0 2023-04-02 19:19:00,254 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 1.0 2023-04-02 19:19:00,255 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0 2023-04-02 19:19:00,255 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 2023-04-02 19:19:00,256 INFO cfg.MODEL.POST_PROCESSING = edict() 2023-04-02 19:19:00,256 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5] 2023-04-02 19:19:00,257 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet 2023-04-02 19:19:00,257 INFO cfg.OPTIMIZATION = edict() 2023-04-02 19:19:00,258 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16 2023-04-02 19:19:00,258 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1 2023-04-02 19:19:00,259 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW 2023-04-02 19:19:00,259 INFO cfg.OPTIMIZATION.LR: 0.001 2023-04-02 19:19:00,259 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001 2023-04-02 19:19:00,260 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [7, 9] 2023-04-02 19:19:00,261 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1 2023-04-02 19:19:00,261 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10 2023-04-02 19:19:00,261 INFO cfg.OPTIMIZATION.PCT_START: 0.4 2023-04-02 19:19:00,262 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10 2023-04-02 19:19:00,262 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07 2023-04-02 19:19:00,263 INFO cfg.OPTIMIZATION.LR_WARMUP: False 2023-04-02 19:19:00,263 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1 2023-04-02 19:19:00,264 INFO cfg.TAG: CAGroup3D 2023-04-02 19:19:00,264 INFO cfg.EXP_GROUP_PATH: scannet_models 2023-04-02 19:19:00,295 INFO Loading SCANNET dataset 2023-04-02 19:19:00,413 INFO Total samples for SCANNET dataset: 1201 2023-04-02 19:19:03,525 INFO ==> Loading parameters from checkpoint ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth to CPU 2023-04-02 19:19:04,589 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2023-04-02 19:19:04,732 INFO ==> Done (loaded 838/838) 2023-04-02 19:19:04,914 INFO ==> Loading parameters from checkpoint ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth to CPU 2023-04-02 19:19:06,073 INFO ==> Loading optimizer parameters from checkpoint ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth to CPU 2023-04-02 19:19:06,413 INFO ==> Done 2023-04-02 19:19:06,797 INFO DistributedDataParallel( (module): CAGroup3D( (vfe): None (backbone_3d): BiResNet( (conv1): Sequential( (0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiReLU() ) (relu): MinkowskiReLU() (layer1): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer2): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer3): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer4): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (compression3): Sequential( (0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (compression4): Sequential( (0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (down3): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (down4): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer3_): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer4_): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer5_): Sequential( (0): Bottleneck( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (layer5): Sequential( (0): Bottleneck( (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (spp): DAPPM( (scale1): Sequential( (0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale2): Sequential( (0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale3): Sequential( (0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale4): Sequential( (0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale0): Sequential( (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process1): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process2): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process3): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process4): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (compression): Sequential( (0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (shortcut): Sequential( (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) ) (out): Sequential( (0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiReLU() ) ) (map_to_bev_module): None (pfe): None (backbone_2d): None (dense_head): CAGroup3DHead( (loss_centerness): CrossEntropy() (loss_bbox): IoU3DLoss() (loss_cls): FocalLoss() (loss_sem): FocalLoss() (loss_offset): SmoothL1Loss() (offset_block): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() (3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiELU() (6): MinkowskiConvolution(in=64, out=3, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (feature_offset): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (semantic_conv): MinkowskiConvolution(in=64, out=18, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (reg_conv): MinkowskiConvolution(in=64, out=6, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (cls_conv): MinkowskiConvolution(in=64, out=18, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (scales): ModuleList( (0): Scale() (1): Scale() (2): Scale() (3): Scale() (4): Scale() (5): Scale() (6): Scale() (7): Scale() (8): Scale() (9): Scale() (10): Scale() (11): Scale() (12): Scale() (13): Scale() (14): Scale() (15): Scale() (16): Scale() (17): Scale() ) (cls_individual_out): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (10): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (11): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (12): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (13): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (14): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (15): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (16): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (17): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) (cls_individual_up): ModuleList( (0): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (1): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (2): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (3): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (4): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (5): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (6): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (7): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (8): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (9): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (10): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (11): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (12): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (13): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (14): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (15): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (16): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (17): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) ) (cls_individual_fuse): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (10): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (11): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (12): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (13): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (14): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (15): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (16): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (17): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) (cls_individual_expand_out): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (10): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (11): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (12): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (13): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (14): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (15): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (16): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (17): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) ) (point_head): None (roi_head): CAGroup3DRoIHead( (proposal_target_layer): ProposalTargetLayer() (reg_loss_func): WeightedSmoothL1Loss() (roi_grid_pool_layers): ModuleList( (0): SimplePoolingLayer( (grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (grid_relu): MinkowskiELU() (pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1]) (pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (reg_fc_layers): Sequential( (0): Linear(in_features=128, out_features=256, bias=False) (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() (3): Dropout(p=0.3, inplace=False) (4): Linear(in_features=256, out_features=256, bias=False) (5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU() ) (reg_pred_layer): Linear(in_features=256, out_features=6, bias=True) ) ) ) 2023-04-02 19:19:06,861 INFO **********************Start training scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)********************** 2023-04-03 02:48:23,235 INFO Epoch [ 9][ 50]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6437654900550842, loss_bbox: 0.24313656240701675, loss_cls: 0.12552095234394073, loss_sem: 0.0908023527264595, loss_vote: 0.4054640585184097, one_stage_loss: 1.5086894202232362, rcnn_loss_reg: 0.18907397538423537, loss_two_stage: 0.18907397538423537, 2023-04-03 10:39:11,381 INFO Epoch [ 9][ 100]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6452190101146698, loss_bbox: 0.2506902211904526, loss_cls: 0.13058093473315238, loss_sem: 0.09085427075624466, loss_vote: 0.3957407087087631, one_stage_loss: 1.5130851411819457, rcnn_loss_reg: 0.18459385246038437, loss_two_stage: 0.18459385246038437, 2023-04-03 18:37:23,817 INFO Epoch [ 9][ 150]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6455395030975342, loss_bbox: 0.26197255998849867, loss_cls: 0.13516157254576683, loss_sem: 0.09203423753380775, loss_vote: 0.3918899363279343, one_stage_loss: 1.5265977954864502, rcnn_loss_reg: 0.19318852871656417, loss_two_stage: 0.19318852871656417, 2023-04-04 02:50:19,460 INFO Epoch [ 9][ 200]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6455828678607941, loss_bbox: 0.26617022305727006, loss_cls: 0.13564770326018333, loss_sem: 0.09159276977181435, loss_vote: 0.3895376515388489, one_stage_loss: 1.5285312223434449, rcnn_loss_reg: 0.19834407955408095, loss_two_stage: 0.19834407955408095, 2023-04-04 10:54:09,210 INFO Epoch [ 9][ 250]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6433031773567199, loss_bbox: 0.2684298923611641, loss_cls: 0.1351591469347477, loss_sem: 0.0898670071363449, loss_vote: 0.38588442504405973, one_stage_loss: 1.5226436424255372, rcnn_loss_reg: 0.19586090356111527, loss_two_stage: 0.19586090356111527, 2023-04-04 18:54:23,838 INFO Epoch [ 9][ 300]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6456489896774292, loss_bbox: 0.26939463675022124, loss_cls: 0.13399980276823042, loss_sem: 0.08941386982798577, loss_vote: 0.38932142794132235, one_stage_loss: 1.5277787280082702, rcnn_loss_reg: 0.19743700653314591, loss_two_stage: 0.19743700653314591, 2023-04-05 03:03:32,943 INFO Epoch [ 9][ 350]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6423018944263458, loss_bbox: 0.2762458199262619, loss_cls: 0.13613657861948014, loss_sem: 0.08952155798673629, loss_vote: 0.3827694195508957, one_stage_loss: 1.526975281238556, rcnn_loss_reg: 0.2028840947151184, loss_two_stage: 0.2028840947151184, 2023-04-05 11:14:13,601 INFO Epoch [ 9][ 400]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6456181585788727, loss_bbox: 0.27737378895282744, loss_cls: 0.1374327675998211, loss_sem: 0.08987010061740876, loss_vote: 0.3778589928150177, one_stage_loss: 1.5281538224220277, rcnn_loss_reg: 0.19922083646059036, loss_two_stage: 0.19922083646059036, 2023-04-05 19:27:24,824 INFO Epoch [ 9][ 450]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6425622916221618, loss_bbox: 0.27846161276102066, loss_cls: 0.1391485698521137, loss_sem: 0.09056971445679665, loss_vote: 0.3740858173370361, one_stage_loss: 1.524828016757965, rcnn_loss_reg: 0.2066230583190918, loss_two_stage: 0.2066230583190918, 2023-04-06 03:42:50,486 INFO Epoch [ 9][ 500]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6431539249420166, loss_bbox: 0.29076395750045775, loss_cls: 0.14162053808569908, loss_sem: 0.09268154501914978, loss_vote: 0.37324252247810363, one_stage_loss: 1.5414625024795532, rcnn_loss_reg: 0.21089414656162261, loss_two_stage: 0.21089414656162261, 2023-04-06 12:02:31,235 INFO Epoch [ 9][ 550]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6435322630405426, loss_bbox: 0.2865727955102921, loss_cls: 0.14131027206778526, loss_sem: 0.08974318355321884, loss_vote: 0.36962947726249695, one_stage_loss: 1.5307879900932313, rcnn_loss_reg: 0.21048259049654006, loss_two_stage: 0.21048259049654006, 2023-04-06 20:02:56,351 INFO Epoch [ 9][ 600]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6414503383636475, loss_bbox: 0.29402961790561677, loss_cls: 0.14405513793230057, loss_sem: 0.09276293635368348, loss_vote: 0.34642710983753205, one_stage_loss: 1.5187251472473144, rcnn_loss_reg: 0.21440828204154969, loss_two_stage: 0.21440828204154969, 2023-04-07 04:17:17,115 INFO Epoch [ 9][ 650]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6445023834705352, loss_bbox: 0.29507197201251983, loss_cls: 0.1420440413057804, loss_sem: 0.08918493255972862, loss_vote: 0.36039295852184294, one_stage_loss: 1.5311962819099427, rcnn_loss_reg: 0.21248085170984268, loss_two_stage: 0.21248085170984268, 2023-04-07 12:27:17,390 INFO Epoch [ 9][ 700]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6422169864177704, loss_bbox: 0.29913002490997315, loss_cls: 0.1449529528617859, loss_sem: 0.09117808878421783, loss_vote: 0.35617750346660615, one_stage_loss: 1.5336555647850036, rcnn_loss_reg: 0.21863267749547957, loss_two_stage: 0.21863267749547957, 2023-04-07 20:27:53,668 INFO Epoch [ 9][ 750]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6417906320095063, loss_bbox: 0.30550686359405516, loss_cls: 0.14678879588842392, loss_sem: 0.09153819352388382, loss_vote: 0.33501013278961184, one_stage_loss: 1.5206346249580383, rcnn_loss_reg: 0.21843280464410783, loss_two_stage: 0.21843280464410783, 2023-04-07 20:40:13,681 INFO **********************End training scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)********************** 2023-04-07 20:40:13,682 INFO **********************Start evaluation scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)********************** 2023-04-07 20:40:13,683 INFO Loading SCANNET dataset 2023-04-07 20:40:13,727 INFO Total samples for SCANNET dataset: 312 2023-04-07 20:40:13,734 INFO ==> Loading parameters from checkpoint C:\CITYU\CS5182\proj\CAGroup3D\output\scannet_models\CAGroup3D\cagroup3d-win10-scannet-train\ckpt\checkpoint_epoch_9.pth to CPU 2023-04-07 20:40:15,066 INFO ==> Checkpoint trained from version: pcdet+0.5.2+4ae8a35+pyde9d900 2023-04-07 20:40:15,285 INFO ==> Done (loaded 838/838) 2023-04-07 20:40:15,536 INFO *************** EPOCH 9 EVALUATION ***************** 2023-04-07 23:42:31,883 INFO *************** Performance of EPOCH 9 ***************** 2023-04-07 23:42:31,884 INFO Generate label finished(sec_per_example: 35.0515 second). 2023-04-07 23:42:31,884 INFO recall_roi_0.25: 0.000000 2023-04-07 23:42:31,885 INFO recall_rcnn_0.25: 0.000000 2023-04-07 23:42:31,885 INFO recall_roi_0.5: 0.000000 2023-04-07 23:42:31,886 INFO recall_rcnn_0.5: 0.000000 2023-04-07 23:42:31,886 INFO Average predicted number of objects(312 samples): 615.288 2023-04-07 23:42:50,866 INFO {'cabinet_AP_0.25': 0.48540377616882324, 'bed_AP_0.25': 0.8844786882400513, 'chair_AP_0.25': 0.9513316750526428, 'sofa_AP_0.25': 0.897523820400238, 'table_AP_0.25': 0.6726281046867371, 'door_AP_0.25': 0.6615963578224182, 'window_AP_0.25': 0.6129509806632996, 'bookshelf_AP_0.25': 0.6147690415382385, 'picture_AP_0.25': 0.3527411222457886, 'counter_AP_0.25': 0.6677877902984619, 'desk_AP_0.25': 0.8030293583869934, 'curtain_AP_0.25': 0.6958670020103455, 'refrigerator_AP_0.25': 0.5268049240112305, 'showercurtrain_AP_0.25': 0.7306337356567383, 'toilet_AP_0.25': 0.9988548159599304, 'sink_AP_0.25': 0.7495102286338806, 'bathtub_AP_0.25': 0.8837810754776001, 'garbagebin_AP_0.25': 0.6311063170433044, 'mAP_0.25': 0.7122666239738464, 'cabinet_rec_0.25': 0.9005376344086021, 'bed_rec_0.25': 0.9135802469135802, 'chair_rec_0.25': 0.9692982456140351, 'sofa_rec_0.25': 0.979381443298969, 'table_rec_0.25': 0.8514285714285714, 'door_rec_0.25': 0.9079229122055674, 'window_rec_0.25': 0.900709219858156, 'bookshelf_rec_0.25': 0.8701298701298701, 'picture_rec_0.25': 0.6576576576576577, 'counter_rec_0.25': 0.9423076923076923, 'desk_rec_0.25': 0.9606299212598425, 'curtain_rec_0.25': 0.8656716417910447, 'refrigerator_rec_0.25': 0.8947368421052632, 'showercurtrain_rec_0.25': 0.9642857142857143, 'toilet_rec_0.25': 1.0, 'sink_rec_0.25': 0.8367346938775511, 'bathtub_rec_0.25': 0.9032258064516129, 'garbagebin_rec_0.25': 0.8622641509433963, 'mAR_0.25': 0.8989167924742847, 'cabinet_AP_0.50': 0.3409128785133362, 'bed_AP_0.50': 0.8349310159683228, 'chair_AP_0.50': 0.8949430584907532, 'sofa_AP_0.50': 0.8081077337265015, 'table_AP_0.50': 0.6181142330169678, 'door_AP_0.50': 0.5156012773513794, 'window_AP_0.50': 0.31114932894706726, 'bookshelf_AP_0.50': 0.5378049612045288, 'picture_AP_0.50': 0.22183111310005188, 'counter_AP_0.50': 0.3777454197406769, 'desk_AP_0.50': 0.6232985854148865, 'curtain_AP_0.50': 0.40846431255340576, 'refrigerator_AP_0.50': 0.44400057196617126, 'showercurtrain_AP_0.50': 0.43062731623649597, 'toilet_AP_0.50': 0.9467570781707764, 'sink_AP_0.50': 0.5182515382766724, 'bathtub_AP_0.50': 0.8415195941925049, 'garbagebin_AP_0.50': 0.5481723546981812, 'mAP_0.50': 0.5679017901420593, 'cabinet_rec_0.50': 0.6935483870967742, 'bed_rec_0.50': 0.8641975308641975, 'chair_rec_0.50': 0.9232456140350878, 'sofa_rec_0.50': 0.9175257731958762, 'table_rec_0.50': 0.7571428571428571, 'door_rec_0.50': 0.734475374732334, 'window_rec_0.50': 0.5921985815602837, 'bookshelf_rec_0.50': 0.7662337662337663, 'picture_rec_0.50': 0.42342342342342343, 'counter_rec_0.50': 0.6153846153846154, 'desk_rec_0.50': 0.8346456692913385, 'curtain_rec_0.50': 0.6119402985074627, 'refrigerator_rec_0.50': 0.7719298245614035, 'showercurtrain_rec_0.50': 0.6071428571428571, 'toilet_rec_0.50': 0.9482758620689655, 'sink_rec_0.50': 0.6428571428571429, 'bathtub_rec_0.50': 0.8709677419354839, 'garbagebin_rec_0.50': 0.7169811320754716, 'mAR_0.50': 0.7384509140060744} 2023-04-07 23:42:50,872 INFO Result is save to C:\CITYU\CS5182\proj\CAGroup3D\output\scannet_models\CAGroup3D\cagroup3d-win10-scannet-train\eval\eval_with_train\epoch_9\val 2023-04-07 23:42:50,873 INFO ****************Evaluation done.***************** 2023-04-07 23:42:51,201 INFO Epoch 9 has been evaluated 2023-04-07 23:43:21,209 INFO **********************End evaluation scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)********************** |