File size: 3,384 Bytes
5e1810a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# %% [markdown]
# ## Hugging Faceを使って事前学習モデルを日本語の感情分析用にファインチューニングしてみた
# 以下で紹介されているコードを写経したもの
# https://dev.classmethod.jp/articles/huggingface-jp-text-classification/
# %%
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import TrainingArguments
from transformers import Trainer
from sklearn.metrics import accuracy_score, f1_score
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
import torch
import matplotlib.pyplot as plt
import numpy as np
# %%
print('gpu available:',torch.cuda.is_available())
# %% [markdown]
# ## データセット
# %%
dataset = load_dataset("tyqiangz/multilingual-sentiments", "japanese")
# %%
# データフレームとして扱う
dataset.set_format(type='pandas')
train_df = dataset['train'][:]
# %%
def label_int2str(x):
return dataset["train"].features["label"].int2str(x)
train_df["label_name"] = train_df["label"].apply(label_int2str)
# %%
dataset.reset_format()
# %%
from transformers import AutoTokenizer
model_ckpt = "cl-tohoku/bert-base-japanese-whole-word-masking"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
# %%
def tokenize(batch):
return tokenizer(batch["text"], padding=True, truncation=True)
# %%
dataset_encoded = dataset.map(tokenize, batched=True, batch_size=None)
# %% [markdown]
# ## モデル
# %%
import torch
from transformers import AutoModelForSequenceClassification
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
num_labels = 3
model = (AutoModelForSequenceClassification
.from_pretrained(model_ckpt, num_labels=num_labels)
.to(device))
# %%
from sklearn.metrics import accuracy_score, f1_score
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
f1 = f1_score(labels, preds, average="weighted")
acc = accuracy_score(labels, preds)
return {"accuracy": acc, "f1": f1}
# %%
from transformers import TrainingArguments
batch_size = 16
logging_steps = len(dataset_encoded["train"]) // batch_size
model_name = "sample-text-classification-bert"
training_args = TrainingArguments(
output_dir=model_name,
num_train_epochs=10,
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
weight_decay=0.01,
evaluation_strategy="epoch",
disable_tqdm=False,
logging_steps=logging_steps,
push_to_hub=False,
log_level="error"
)
# %%
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=dataset_encoded["train"],
eval_dataset=dataset_encoded["validation"],
tokenizer=tokenizer
)
print('start training..')
trainer.train()
# %%
# ラベル情報付与
id2label = {}
for i in range(dataset["train"].features["label"].num_classes):
id2label[i] = dataset["train"].features["label"].int2str(i)
label2id = {}
for i in range(dataset["train"].features["label"].num_classes):
label2id[dataset["train"].features["label"].int2str(i)] = i
trainer.model.config.id2label = id2label
trainer.model.config.label2id = label2id
# %%
# 保存
print('save model.')
trainer.save_model('sample-text-classification-bert')
|