--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilhubert-finetuned-mixed-data results: [] --- # distilhubert-finetuned-mixed-data This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on an unknown dataset. - Loss: 0.7808755040168762, - Accuracy: 0.8644688644688645, - F1: 0.8641694609590086, - Precision: 0.8653356589517041, - Recall: 0.8644688644688645, - Confusion Matrix: [[71, 9, 0, 3], [5, 42, 12, 0], [0, 7, 55, 0], [1, 0, 0, 68]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 123 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Confusion Matrix | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------------------------------------------------:| | 0.5098 | 40.0000 | 50 | 0.7809 | 0.8645 | 0.8642 | 0.8653 | 0.8645 | [[71, 9, 0, 3], [5, 42, 12, 0], [0, 7, 55, 0], [1, 0, 0, 68]] | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Tokenizers 0.19.1