optimizerss4 commited on
Commit
eca578e
1 Parent(s): 9da9a87
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/project/lt900048-ai24tn/models/aisingapore/sea-lion-7b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "down_proj",
23
+ "up_proj",
24
+ "Wqkv",
25
+ "out_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4cc80b197590dc1a3cb61e245fa52208bd8f3a52c2c216d3c28b86789c3aa52
3
+ size 135
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": "<|endoftext|>",
10
+ "unk_token": {
11
+ "content": "<unk>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ }
tokenization_SEA_BPE.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
4
+ import sentencepiece as spm
5
+ from tokenizers import processors
6
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
7
+ from transformers.utils import logging
8
+
9
+ logger = logging.get_logger(__name__)
10
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
11
+ SPIECE_UNDERLINE = "▁"
12
+
13
+
14
+ class SEABPETokenizer(PreTrainedTokenizer):
15
+ """
16
+ Construct the SEA BPE Tokenizer tailored for SEA languages. Based on the Byte-Pair-Encoding with an expanded voculabulary size
17
+
18
+ Args:
19
+ vocab_file (`str`):
20
+ Path to the vocabulary file.
21
+ legacy (`bool`, *optional*, defaults to `True`):
22
+ Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622
23
+ which includes fixes to properly handle tokens that appear after special tokens.
24
+ legacy means we are not modifying existing tokenizers without knowing. (And we need to manually update those core tokenizers)
25
+
26
+ A simple example:
27
+
28
+ - `legacy=True`:
29
+ ```python
30
+ >>> from transformers import T5Tokenizer
31
+
32
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True)
33
+ >>> tokenizer.encode("Hello <extra_id_0>.")
34
+ [8774, 32099, 3, 5, 1]
35
+ ```
36
+ - `legacy=False`:
37
+ ```python
38
+ >>> from transformers import T5Tokenizer
39
+
40
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)
41
+ >>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
42
+ [8774, 32099, 5, 1]
43
+ ```
44
+ Checkout the pull request and the issue [here](https://github.com/huggingface/transformers/pull/24565) for
45
+ more details.
46
+
47
+ """
48
+
49
+ vocab_files_names = VOCAB_FILES_NAMES
50
+
51
+ def __init__(
52
+ self,
53
+ vocab_file,
54
+ unk_token="<unk>",
55
+ bos_token=None,
56
+ eos_token="<|endoftext|>",
57
+ pad_token=None,
58
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
59
+ add_bos_token=False,
60
+ add_eos_token=False,
61
+ clean_up_tokenization_spaces=False,
62
+ legacy=None,
63
+ **kwargs,
64
+ ):
65
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
66
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
67
+ self.sp_model.Load(vocab_file)
68
+ super().__init__(
69
+ bos_token=bos_token,
70
+ eos_token=eos_token,
71
+ unk_token=unk_token,
72
+ pad_token=pad_token,
73
+ add_bos_token=add_bos_token,
74
+ add_eos_token=add_eos_token,
75
+ sp_model_kwargs=self.sp_model_kwargs,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ legacy=legacy,
78
+ **kwargs,
79
+ )
80
+ if legacy is None:
81
+ logger.warning_once(
82
+ f"You are using the default legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565, and set the legacy attribute accordingly."
83
+ )
84
+ legacy = True
85
+ self.legacy = legacy
86
+ self.vocab_file = vocab_file
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+
90
+ def __getstate__(self):
91
+ state = self.__dict__.copy()
92
+ state["sp_model"] = None
93
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
94
+ return state
95
+
96
+ def __setstate__(self, d):
97
+ self.__dict__ = d
98
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
99
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
100
+
101
+ @property
102
+ def vocab_size(self):
103
+ """Returns vocab size"""
104
+ return self.sp_model.get_piece_size()
105
+
106
+ def get_vocab(self):
107
+ """Returns vocab as a dict"""
108
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def tokenize(self, text, **kwargs) -> List[str]:
113
+ if not self.legacy:
114
+ text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ")
115
+ return super().tokenize(text, **kwargs)
116
+
117
+ def _tokenize(self, text):
118
+ """
119
+ Returns a tokenized string.
120
+
121
+ Since the sentencepiece internal model always adds a SPIECE_UNDERLINE, at the beginning of the provided text,
122
+ we need to remove it by hand when the current text is a subsequence. This happens whenever the `self.tokenize`
123
+ function is called with specials tokens: the input is split on the special tokens, and each subsequence is
124
+ passed to `_tokenize`. Thus if a subsequence did not start with a `" "` or SPIECE_UNDERLINE, we have to remove
125
+ the extra `SPIECE_UNDERLINE` prepended.
126
+ """
127
+ if not self.legacy:
128
+ is_first = text.startswith(SPIECE_UNDERLINE)
129
+ if is_first:
130
+ text = text[1:]
131
+ tokens = self.sp_model.encode(text, out_type=str)
132
+ if (
133
+ not self.legacy
134
+ and (not is_first)
135
+ and (not text.startswith(" "))
136
+ and tokens[0].startswith(SPIECE_UNDERLINE)
137
+ ):
138
+ tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:]
139
+ return tokens
140
+
141
+ def _convert_token_to_id(self, token):
142
+ """Converts a token (str) in an id using the vocab."""
143
+ return self.sp_model.piece_to_id(token)
144
+
145
+ def _convert_id_to_token(self, index):
146
+ """Converts an index (integer) in a token (str) using the vocab."""
147
+ token = self.sp_model.IdToPiece(index)
148
+ return token
149
+
150
+ def convert_tokens_to_string(self, tokens):
151
+ """Converts a sequence of tokens (string) in a single string."""
152
+ current_sub_tokens = []
153
+ out_string = ""
154
+ prev_is_special = False
155
+ for i, token in enumerate(tokens):
156
+ if token in self.all_special_tokens:
157
+ if not prev_is_special and i != 0:
158
+ out_string += " "
159
+ out_string += self.sp_model.decode(current_sub_tokens) + token
160
+ prev_is_special = True
161
+ current_sub_tokens = []
162
+ else:
163
+ current_sub_tokens.append(token)
164
+ prev_is_special = False
165
+ out_string += self.sp_model.decode(current_sub_tokens)
166
+ return out_string
167
+
168
+ def save_vocabulary(
169
+ self, save_directory, filename_prefix: Optional[str] = None
170
+ ) -> Tuple[str]:
171
+ """
172
+ Save the vocabulary and special tokens file to a directory.
173
+
174
+ Args:
175
+ save_directory (`str`):
176
+ The directory in which to save the vocabulary.
177
+
178
+ Returns:
179
+ `Tuple(str)`: Paths to the files saved.
180
+ """
181
+ if not os.path.isdir(save_directory):
182
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
183
+ return
184
+ out_vocab_file = os.path.join(
185
+ save_directory,
186
+ (filename_prefix + "-" if filename_prefix else "")
187
+ + VOCAB_FILES_NAMES["vocab_file"],
188
+ )
189
+ if os.path.abspath(self.vocab_file) != os.path.abspath(
190
+ out_vocab_file
191
+ ) and os.path.isfile(self.vocab_file):
192
+ copyfile(self.vocab_file, out_vocab_file)
193
+ elif not os.path.isfile(self.vocab_file):
194
+ with open(out_vocab_file, "wb") as fi:
195
+ content_spiece_model = self.sp_model.serialized_model_proto()
196
+ fi.write(content_spiece_model)
197
+ return (out_vocab_file,)
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c014021ed065b9a2d79b17af584443799ef4c2cbf64262ac57ad2249dd7df0
3
+ size 132
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<|endofline|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<|padding|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "auto_map": {
39
+ "AutoTokenizer": [
40
+ "tokenization_SEA_BPE.SEABPETokenizer",
41
+ null
42
+ ]
43
+ },
44
+ "bos_token": null,
45
+ "clean_up_tokenization_spaces": false,
46
+ "eos_token": "<|endoftext|>",
47
+ "legacy": true,
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_token": "<|endoftext|>",
50
+ "sp_model_kwargs": {},
51
+ "tokenizer_class": "SEABPETokenizer",
52
+ "unk_token": "<unk>"
53
+ }