AIGym commited on
Commit
dde4755
1 Parent(s): 949ef89

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: deepseek-license
4
+ license_link: LICENSE
5
+ ---
6
+
7
+
8
+ <p align="center">
9
+ <img width="1000px" alt="DeepSeek Coder" src="https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/pictures/logo.png?raw=true">
10
+ </p>
11
+ <p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://coder.deepseek.com/">[🤖 Chat with DeepSeek Coder]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/guoday/assert/blob/main/QR.png?raw=true">[Wechat(微信)]</a> </p>
12
+ <hr>
13
+
14
+
15
+
16
+ ### 1. Introduction of Deepseek Coder
17
+
18
+ Deepseek Coder is composed of a series of code language models, each trained from scratch on 2T tokens, with a composition of 87% code and 13% natural language in both English and Chinese. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.
19
+
20
+ - **Massive Training Data**: Trained from scratch on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
21
+
22
+ - **Highly Flexible & Scalable**: Offered in model sizes of 1.3B, 5.7B, 6.7B, and 33B, enabling users to choose the setup most suitable for their requirements.
23
+
24
+ - **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.
25
+
26
+ - **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.
27
+
28
+
29
+
30
+ ### 2. Model Summary
31
+ deepseek-coder-1.3b-base is a 1.3B parameter model with Multi-Head Attention trained on 1 trillion tokens.
32
+ - **Home Page:** [DeepSeek](https://deepseek.com/)
33
+ - **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder)
34
+ - **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/)
35
+
36
+
37
+ ### 3. How to Use
38
+ Here give some examples of how to use our model.
39
+ #### 1)Code Completion
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModelForCausalLM
42
+ import torch
43
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base", trust_remote_code=True)
44
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base", trust_remote_code=True).cuda()
45
+ input_text = "#write a quick sort algorithm"
46
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
47
+ outputs = model.generate(**inputs, max_length=128)
48
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
49
+ ```
50
+
51
+ #### 2)Code Insertion
52
+ ```python
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+ import torch
55
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base", trust_remote_code=True)
56
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base", trust_remote_code=True).cuda()
57
+ input_text = """<|fim▁begin|>def quick_sort(arr):
58
+ if len(arr) <= 1:
59
+ return arr
60
+ pivot = arr[0]
61
+ left = []
62
+ right = []
63
+ <|fim▁hole|>
64
+ if arr[i] < pivot:
65
+ left.append(arr[i])
66
+ else:
67
+ right.append(arr[i])
68
+ return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
69
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
70
+ outputs = model.generate(**inputs, max_length=128)
71
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
72
+ ```
73
+
74
+ #### 3)Repository Level Code Completion
75
+ ```python
76
+ from transformers import AutoTokenizer, AutoModelForCausalLM
77
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base", trust_remote_code=True)
78
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base", trust_remote_code=True).cuda()
79
+
80
+ input_text = """#utils.py
81
+ import torch
82
+ from sklearn import datasets
83
+ from sklearn.model_selection import train_test_split
84
+ from sklearn.preprocessing import StandardScaler
85
+ from sklearn.metrics import accuracy_score
86
+
87
+ def load_data():
88
+ iris = datasets.load_iris()
89
+ X = iris.data
90
+ y = iris.target
91
+
92
+ # Standardize the data
93
+ scaler = StandardScaler()
94
+ X = scaler.fit_transform(X)
95
+
96
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
97
+
98
+ # Convert numpy data to PyTorch tensors
99
+ X_train = torch.tensor(X_train, dtype=torch.float32)
100
+ X_test = torch.tensor(X_test, dtype=torch.float32)
101
+ y_train = torch.tensor(y_train, dtype=torch.int64)
102
+ y_test = torch.tensor(y_test, dtype=torch.int64)
103
+
104
+ return X_train, X_test, y_train, y_test
105
+
106
+ def evaluate_predictions(y_test, y_pred):
107
+ return accuracy_score(y_test, y_pred)
108
+ #model.py
109
+ import torch
110
+ import torch.nn as nn
111
+ import torch.optim as optim
112
+ from torch.utils.data import DataLoader, TensorDataset
113
+
114
+ class IrisClassifier(nn.Module):
115
+ def __init__(self):
116
+ super(IrisClassifier, self).__init__()
117
+ self.fc = nn.Sequential(
118
+ nn.Linear(4, 16),
119
+ nn.ReLU(),
120
+ nn.Linear(16, 3)
121
+ )
122
+
123
+ def forward(self, x):
124
+ return self.fc(x)
125
+
126
+ def train_model(self, X_train, y_train, epochs, lr, batch_size):
127
+ criterion = nn.CrossEntropyLoss()
128
+ optimizer = optim.Adam(self.parameters(), lr=lr)
129
+
130
+ # Create DataLoader for batches
131
+ dataset = TensorDataset(X_train, y_train)
132
+ dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
133
+
134
+ for epoch in range(epochs):
135
+ for batch_X, batch_y in dataloader:
136
+ optimizer.zero_grad()
137
+ outputs = self(batch_X)
138
+ loss = criterion(outputs, batch_y)
139
+ loss.backward()
140
+ optimizer.step()
141
+
142
+ def predict(self, X_test):
143
+ with torch.no_grad():
144
+ outputs = self(X_test)
145
+ _, predicted = outputs.max(1)
146
+ return predicted.numpy()
147
+ #main.py
148
+ from utils import load_data, evaluate_predictions
149
+ from model import IrisClassifier as Classifier
150
+
151
+ def main():
152
+ # Model training and evaluation
153
+ """
154
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
155
+ outputs = model.generate(**inputs, max_new_tokens=140)
156
+ print(tokenizer.decode(outputs[0]))
157
+ ```
158
+
159
+
160
+
161
+ ### 4. License
162
+ This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
163
+
164
+ See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details.
165
+
166
+ ### 5. Contact
167
+
168
+ If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).