--- library_name: peft base_model: codellama/CodeLlama-7b-Instruct-hf --- LoRA adapter release for the paper **BTGenBot: Behavior Tree Generation for Robotic Tasks with Lightweight LLMs**, currently in submission at **IEEE/RSJ International Conference on Intelligent Robots and Systems**. [`GitHub Repository`](https://github.com/AIRLab-POLIMI/BTGenBot) [`Paper `](https://arxiv.org/abs/2403.12761) # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** Riccardo Andrea Izzo - **Model type:** Transformer-based language model - **Language(s) (NLP):** English - **Finetuned from model [optional]:** CodeLlama-7b-Instruct-hf ### Model Sources [optional] - **Repository:** codellama/CodeLlama-7b-Instruct-hf ## Uses Behavior trees generation for robotic tasks ## Hardware infrastructure - **Hardware Type:** 2x NVIDIA Quadro RTX 6000 - **Hours used:** 36h ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0