PEFT
Safetensors
medical
stardust-coder commited on
Commit
0614bd9
1 Parent(s): 078cd49

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -3
README.md CHANGED
@@ -8,19 +8,18 @@ tags:
8
 
9
  # MedSwallow-70B🏥
10
 
11
- [東工大Swallow](tokyotech-llm/Swallow-70b-instruct-hf)をベースモデルとし, 医療Q&AデータセットでInstruction Tuningを施した医療ドメインの日本語LLMです.
12
 
13
  チューニングには独自で用意した米国医師国家試験(USMLE)を和訳したQ&Aデータセットを用いました.
14
 
15
 
16
  MedSwallow is a Japanese medical LLM for medical question-answering.
17
 
18
- MedSwallow is based on [Swallow-70B]((tokyotech-llm/Swallow-70b-instruct-hf)) and has passed instruction tuning with USMLE dataset translated in Japanese by our own.
19
 
20
 
21
  ## Training procedure
22
 
23
-
24
  The following `bitsandbytes` quantization config was used during training:
25
  - quant_method: bitsandbytes
26
  - load_in_8bit: False
@@ -44,6 +43,46 @@ The following `bitsandbytes` quantization config was used during training:
44
  Non-commercial.
45
 
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  ## How to cite
48
  ```
49
  coming soon...
 
8
 
9
  # MedSwallow-70B🏥
10
 
11
+ [東工大Swallow](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)をベースモデルとし, 医療Q&AデータセットでInstruction Tuningを施した医療ドメインの日本語LLMです.
12
 
13
  チューニングには独自で用意した米国医師国家試験(USMLE)を和訳したQ&Aデータセットを用いました.
14
 
15
 
16
  MedSwallow is a Japanese medical LLM for medical question-answering.
17
 
18
+ MedSwallow is based on [Swallow-70B](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf) and has passed instruction tuning with USMLE dataset translated in Japanese by our own.
19
 
20
 
21
  ## Training procedure
22
 
 
23
  The following `bitsandbytes` quantization config was used during training:
24
  - quant_method: bitsandbytes
25
  - load_in_8bit: False
 
43
  Non-commercial.
44
 
45
 
46
+ ## Usage
47
+
48
+ ```
49
+ model_name = "tokyotech-llm/Swallow-70b-instruct-hf"
50
+ peft_model= "AIgroup-CVM-utokyohospital/MedSwallow-70b"
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
53
+
54
+ bnb_config = BitsAndBytesConfig(
55
+ load_in_4bit=True,
56
+ bnb_4bit_quant_type="nf4",
57
+ bnb_4bit_compute_dtype=torch.float16,
58
+ )
59
+
60
+ model = AutoModelForCausalLM.from_pretrained(
61
+ model_name,
62
+ load_in_8bit=False,
63
+ torch_dtype=torch.float16,
64
+ device_map=device,
65
+
66
+ model = PeftModel.from_pretrained(
67
+ model,
68
+ peft_model,
69
+ torch_dtype=torch.float16,
70
+ device_map=device,
71
+ )
72
+
73
+ ```
74
+
75
+
76
+ ## Benchmark
77
+
78
+ See also [Japanese Medical Language Model Evaluation Harness](https://github.com/stardust-coder/japanese-lm-med-harness).
79
+
80
+ - IgakuQA (in English):
81
+ - IgakuQA (in Japanese):
82
+ - MedQA (in English) :
83
+ - MedQA (in Japanese) :
84
+
85
+
86
  ## How to cite
87
  ```
88
  coming soon...