End of training
Browse files- README.md +21 -23
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -53,11 +53,9 @@ More information needed
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 6e-05
|
56 |
-
- train_batch_size:
|
57 |
-
- eval_batch_size:
|
58 |
- seed: 42
|
59 |
-
- gradient_accumulation_steps: 2
|
60 |
-
- total_train_batch_size: 12
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -67,26 +65,26 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.32.
|
90 |
- Pytorch 2.0.1+cu118
|
91 |
- Datasets 2.14.4
|
92 |
- Tokenizers 0.13.3
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.85
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8372
|
36 |
+
- Accuracy: 0.85
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 6e-05
|
56 |
+
- train_batch_size: 7
|
57 |
+
- eval_batch_size: 7
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 1.9696 | 1.0 | 129 | 1.8571 | 0.55 |
|
69 |
+
| 1.4269 | 2.0 | 258 | 1.2394 | 0.61 |
|
70 |
+
| 1.0166 | 3.0 | 387 | 1.0173 | 0.74 |
|
71 |
+
| 0.7446 | 4.0 | 516 | 0.8103 | 0.75 |
|
72 |
+
| 0.4953 | 5.0 | 645 | 0.7800 | 0.77 |
|
73 |
+
| 0.3973 | 6.0 | 774 | 0.7359 | 0.81 |
|
74 |
+
| 0.2831 | 7.0 | 903 | 0.6434 | 0.84 |
|
75 |
+
| 0.2147 | 8.0 | 1032 | 0.6592 | 0.84 |
|
76 |
+
| 0.1287 | 9.0 | 1161 | 0.6988 | 0.85 |
|
77 |
+
| 0.014 | 10.0 | 1290 | 0.7569 | 0.83 |
|
78 |
+
| 0.0073 | 11.0 | 1419 | 0.8282 | 0.84 |
|
79 |
+
| 0.0049 | 12.0 | 1548 | 0.8531 | 0.84 |
|
80 |
+
| 0.0053 | 13.0 | 1677 | 0.8584 | 0.84 |
|
81 |
+
| 0.0044 | 14.0 | 1806 | 0.8707 | 0.84 |
|
82 |
+
| 0.0038 | 15.0 | 1935 | 0.8372 | 0.85 |
|
83 |
|
84 |
|
85 |
### Framework versions
|
86 |
|
87 |
+
- Transformers 4.32.1
|
88 |
- Pytorch 2.0.1+cu118
|
89 |
- Datasets 2.14.4
|
90 |
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94783376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12d5ac136d5cb0d215906257d60ba4375661b0d27ee483280a021b922dd9f094
|
3 |
size 94783376
|