--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: DistilHuBERT-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # DistilHuBERT-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8372 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9696 | 1.0 | 129 | 1.8571 | 0.55 | | 1.4269 | 2.0 | 258 | 1.2394 | 0.61 | | 1.0166 | 3.0 | 387 | 1.0173 | 0.74 | | 0.7446 | 4.0 | 516 | 0.8103 | 0.75 | | 0.4953 | 5.0 | 645 | 0.7800 | 0.77 | | 0.3973 | 6.0 | 774 | 0.7359 | 0.81 | | 0.2831 | 7.0 | 903 | 0.6434 | 0.84 | | 0.2147 | 8.0 | 1032 | 0.6592 | 0.84 | | 0.1287 | 9.0 | 1161 | 0.6988 | 0.85 | | 0.014 | 10.0 | 1290 | 0.7569 | 0.83 | | 0.0073 | 11.0 | 1419 | 0.8282 | 0.84 | | 0.0049 | 12.0 | 1548 | 0.8531 | 0.84 | | 0.0053 | 13.0 | 1677 | 0.8584 | 0.84 | | 0.0044 | 14.0 | 1806 | 0.8707 | 0.84 | | 0.0038 | 15.0 | 1935 | 0.8372 | 0.85 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3