--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0646 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0114 | 1.0 | 225 | 1.8491 | 0.5 | | 1.1983 | 2.0 | 450 | 1.1911 | 0.68 | | 1.1408 | 3.0 | 675 | 0.9290 | 0.72 | | 0.7166 | 4.0 | 900 | 0.7200 | 0.78 | | 0.5334 | 5.0 | 1125 | 0.7233 | 0.79 | | 0.3294 | 6.0 | 1350 | 0.4989 | 0.83 | | 0.2949 | 7.0 | 1575 | 0.5294 | 0.85 | | 0.0067 | 8.0 | 1800 | 0.7724 | 0.83 | | 0.0041 | 9.0 | 2025 | 0.8986 | 0.8 | | 0.0049 | 10.0 | 2250 | 0.9146 | 0.83 | | 0.0016 | 11.0 | 2475 | 0.8999 | 0.85 | | 0.0013 | 12.0 | 2700 | 0.8947 | 0.86 | | 0.0015 | 13.0 | 2925 | 0.9257 | 0.85 | | 0.0009 | 14.0 | 3150 | 1.0211 | 0.82 | | 0.0009 | 15.0 | 3375 | 0.9288 | 0.84 | | 0.0008 | 16.0 | 3600 | 0.9672 | 0.82 | | 0.0009 | 17.0 | 3825 | 1.0717 | 0.82 | | 0.0756 | 18.0 | 4050 | 1.0646 | 0.82 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3