--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: DistilHuBERT-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # DistilHuBERT-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7337 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1397 | 1.0 | 75 | 2.0011 | 0.45 | | 1.4889 | 2.0 | 150 | 1.3599 | 0.66 | | 1.0109 | 3.0 | 225 | 1.0052 | 0.74 | | 0.7499 | 4.0 | 300 | 0.8884 | 0.77 | | 0.5627 | 5.0 | 375 | 0.6333 | 0.86 | | 0.4138 | 6.0 | 450 | 0.5492 | 0.81 | | 0.2909 | 7.0 | 525 | 0.6417 | 0.81 | | 0.1475 | 8.0 | 600 | 0.5900 | 0.84 | | 0.0845 | 9.0 | 675 | 0.6959 | 0.84 | | 0.0619 | 10.0 | 750 | 0.6587 | 0.86 | | 0.0233 | 11.0 | 825 | 0.7675 | 0.82 | | 0.0168 | 12.0 | 900 | 0.7352 | 0.83 | | 0.0152 | 13.0 | 975 | 0.7293 | 0.87 | | 0.0136 | 14.0 | 1050 | 0.7490 | 0.86 | | 0.0123 | 15.0 | 1125 | 0.7337 | 0.86 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3