Updated model card
Browse files
README.md
CHANGED
@@ -1,199 +1,76 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
- **
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- question-answering
|
6 |
+
- transformers
|
7 |
+
- bert
|
8 |
+
- squad
|
9 |
+
license: apache-2.0
|
10 |
+
datasets:
|
11 |
+
- squad
|
12 |
+
model-name: bert-base-uncased-finetuned-squad
|
13 |
+
library_name: transformers
|
14 |
+
---
|
15 |
+
|
16 |
+
# BERT-Base Uncased Fine-Tuned on SQuAD
|
17 |
+
|
18 |
+
## Overview
|
19 |
+
|
20 |
+
This repository contains a **BERT-Base Uncased** model fine-tuned on the **SQuAD (Stanford Question Answering Dataset)** for **Question Answering (QA) tasks**. The model has been fine-tuned for **2 epochs**, making it suitable for extracting answers from given contexts by predicting start and end token positions.
|
21 |
+
|
22 |
+
## The Model predicts 2 probabilities among all the tokens in the vocab , One indicating the start token and the other indicating the end token, Then the answer between both these tokens are extracted.
|
23 |
+
|
24 |
+
## Model Details
|
25 |
+
|
26 |
+
- **Model Type**: BERT-Base Uncased
|
27 |
+
- **Fine-Tuning Dataset**: SQuAD (Stanford Question Answering Dataset)
|
28 |
+
- **Number of Epochs**: 2
|
29 |
+
- **Task**: Question Answering
|
30 |
+
- **Base Model**: [BERT-Base Uncased](https://huggingface.co/bert-base-uncased)
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
### How to Load the Model
|
37 |
+
|
38 |
+
You can load the model using the `transformers` library from Hugging Face:
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import BertForQuestionAnswering, BertTokenizer
|
42 |
+
|
43 |
+
# Load the tokenizer and model
|
44 |
+
tokenizer = BertTokenizer.from_pretrained("Abdo36/Bert-SquAD-QA")
|
45 |
+
model = BertForQuestionAnswering.from_pretrained("Abdo36/Bert-SquAD-QA")
|
46 |
+
|
47 |
+
context = "BERT is a method of pre-training language representations."
|
48 |
+
question = "What is BERT?"
|
49 |
+
|
50 |
+
inputs = tokenizer.encode_plus(question, context, return_tensors="pt")
|
51 |
+
|
52 |
+
# Perform inference
|
53 |
+
outputs = model(**inputs)
|
54 |
+
start_scores = outputs.start_logits
|
55 |
+
end_scores = outputs.end_logits
|
56 |
+
|
57 |
+
# Extract answer
|
58 |
+
start_index = start_scores.argmax()
|
59 |
+
end_index = end_scores.argmax()
|
60 |
+
answer = tokenizer.decode(inputs["input_ids"][0][start_index:end_index + 1])
|
61 |
+
|
62 |
+
print("Answer:", answer)
|
63 |
+
```
|
64 |
+
|
65 |
+
## Citation
|
66 |
+
|
67 |
+
If you use this model in your research, please cite the original BERT paper:
|
68 |
+
|
69 |
+
```bibtex
|
70 |
+
@article{devlin2018bert,
|
71 |
+
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
|
72 |
+
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
|
73 |
+
journal={arXiv preprint arXiv:1810.04805},
|
74 |
+
year={2018}
|
75 |
+
}
|
76 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|