--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-1_5 model-index: - name: phi-1_5-finetuned-news-events results: [] --- # phi-1_5-finetuned-news-events This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 800 ### Training results ### How to use ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Abinaya/phi-1_5-finetuned-news-events", trust_remote_code=True, torch_dtype=torch.float32) tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True) ``` And test ``` inputs = tokenizer([f"extract events from news.\n News: {test_data[0]['text']}"], return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=512) text = tokenizer.batch_decode(outputs)[0] print(text) ``` ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2