Initial version.
Browse files- README.md +61 -0
- adapter_config.json +23 -0
- head_config.json +40 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- roberta
|
4 |
+
- adapterhub:ner/mit_movie_trivia
|
5 |
+
- adapter-transformers
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
---
|
9 |
+
|
10 |
+
# Adapter `AdapterHub/roberta-base-pf-mit_movie_trivia` for roberta-base
|
11 |
+
|
12 |
+
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ner/mit_movie_trivia](https://adapterhub.ml/explore/ner/mit_movie_trivia/) dataset and includes a prediction head for tagging.
|
13 |
+
|
14 |
+
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
First, install `adapter-transformers`:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U adapter-transformers
|
22 |
+
```
|
23 |
+
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
|
24 |
+
|
25 |
+
Now, the adapter can be loaded and activated like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import AutoModelWithHeads
|
29 |
+
|
30 |
+
model = AutoModelWithHeads.from_pretrained("roberta-base")
|
31 |
+
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-mit_movie_trivia", source="hf")
|
32 |
+
model.active_adapters = adapter_name
|
33 |
+
```
|
34 |
+
|
35 |
+
## Architecture & Training
|
36 |
+
|
37 |
+
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
|
38 |
+
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
|
39 |
+
|
40 |
+
|
41 |
+
## Evaluation results
|
42 |
+
|
43 |
+
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
|
44 |
+
|
45 |
+
## Citation
|
46 |
+
|
47 |
+
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@inproceedings{poth-etal-2021-what-to-pre-train-on,
|
51 |
+
title={What to Pre-Train on? Efficient Intermediate Task Selection},
|
52 |
+
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
|
53 |
+
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
54 |
+
month = nov,
|
55 |
+
year = "2021",
|
56 |
+
address = "Online",
|
57 |
+
publisher = "Association for Computational Linguistics",
|
58 |
+
url = "https://arxiv.org/abs/2104.08247",
|
59 |
+
pages = "to appear",
|
60 |
+
}
|
61 |
+
```
|
adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"adapter_residual_before_ln": false,
|
4 |
+
"cross_adapter": false,
|
5 |
+
"inv_adapter": null,
|
6 |
+
"inv_adapter_reduction_factor": null,
|
7 |
+
"leave_out": [],
|
8 |
+
"ln_after": false,
|
9 |
+
"ln_before": false,
|
10 |
+
"mh_adapter": false,
|
11 |
+
"non_linearity": "relu",
|
12 |
+
"original_ln_after": true,
|
13 |
+
"original_ln_before": true,
|
14 |
+
"output_adapter": true,
|
15 |
+
"reduction_factor": 16,
|
16 |
+
"residual_before_ln": true
|
17 |
+
},
|
18 |
+
"hidden_size": 768,
|
19 |
+
"model_class": "RobertaModelWithHeads",
|
20 |
+
"model_name": "roberta-base",
|
21 |
+
"model_type": "roberta",
|
22 |
+
"name": "mit_movie_trivia"
|
23 |
+
}
|
head_config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "tanh",
|
4 |
+
"head_type": "tagging",
|
5 |
+
"label2id": {
|
6 |
+
"B-Actor": 0,
|
7 |
+
"B-Award": 1,
|
8 |
+
"B-Character_Name": 2,
|
9 |
+
"B-Director": 3,
|
10 |
+
"B-Genre": 4,
|
11 |
+
"B-Opinion": 5,
|
12 |
+
"B-Origin": 6,
|
13 |
+
"B-Plot": 7,
|
14 |
+
"B-Quote": 8,
|
15 |
+
"B-Relationship": 9,
|
16 |
+
"B-Soundtrack": 10,
|
17 |
+
"B-Year": 11,
|
18 |
+
"I-Actor": 12,
|
19 |
+
"I-Award": 13,
|
20 |
+
"I-Character_Name": 14,
|
21 |
+
"I-Director": 15,
|
22 |
+
"I-Genre": 16,
|
23 |
+
"I-Opinion": 17,
|
24 |
+
"I-Origin": 18,
|
25 |
+
"I-Plot": 19,
|
26 |
+
"I-Quote": 20,
|
27 |
+
"I-Relationship": 21,
|
28 |
+
"I-Soundtrack": 22,
|
29 |
+
"I-Year": 23,
|
30 |
+
"O": 24
|
31 |
+
},
|
32 |
+
"layers": 1,
|
33 |
+
"num_labels": 25
|
34 |
+
},
|
35 |
+
"hidden_size": 768,
|
36 |
+
"model_class": "RobertaModelWithHeads",
|
37 |
+
"model_name": "roberta-base",
|
38 |
+
"model_type": "roberta",
|
39 |
+
"name": "mit_movie_trivia"
|
40 |
+
}
|
pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cced01be716f9132fdbe9dde37401c0ec23797249596a8c7b32d5315d47a5230
|
3 |
+
size 3595311
|
pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd9d47e378d43326e9bc2ed34ec7e73ca8261b0713622f3bbcaaa69a5e5fdb2b
|
3 |
+
size 77943
|