Fine-tuned [Bert-Base-Chinese](https://huggingface.co/bert-base-chinese) for NER task on [Adapting/chinese_biomedical_NER_dataset](https://huggingface.co/datasets/Adapting/chinese_biomedical_NER_dataset) # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Adapting/bert-base-chinese-finetuned-NER-biomedical") model = AutoModelForTokenClassification.from_pretrained("Adapting/bert-base-chinese-finetuned-NER-biomedical",revision='7f63e3d18b1dc3cc23041a89e77be21860704d2e') from transformers import pipeline nlp = pipeline('ner',model=model,tokenizer = tokenizer) tag_set = [ 'B_手术', 'I_疾病和诊断', 'B_症状', 'I_解剖部位', 'I_药物', 'B_影像检查', 'B_药物', 'B_疾病和诊断', 'I_影像检查', 'I_手术', 'B_解剖部位', 'O', 'B_实验室检验', 'I_症状', 'I_实验室检验' ] tag2id = lambda tag: tag_set.index(tag) id2tag = lambda id: tag_set[id] def readable_result(result): results_in_word = [] j = 0 while j < len(result): i = result[j] entity = id2tag(int(i['entity'][i['entity'].index('_')+1:])) token = i['word'] if entity.startswith('B'): entity_name = entity[entity.index('_')+1:] word = token j = j+1 while j= len(result): results_in_word.append((entity_name,word)) else: results_in_word.append((entity_name,word)) break else: j += 1 return results_in_word print(readable_result(nlp('淋球菌性尿道炎会引起头痛'))) ''' [('疾病和诊断', '淋球菌性尿道炎'), ('症状', '头痛')] ''' ```