File size: 3,849 Bytes
521ccdb 1d1e445 f1a89dd e6d6838 521ccdb f1a89dd e6d6838 521ccdb 9f338a6 1d1e445 9f338a6 1d1e445 9f338a6 1d1e445 9f338a6 e6d6838 9f338a6 1d1e445 9f338a6 1d1e445 9f338a6 1d1e445 521ccdb 1d1e445 521ccdb e6d6838 521ccdb 282d9f7 f1a89dd 282d9f7 521ccdb f1a89dd 521ccdb f1a89dd 521ccdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
library_name: peft
base_model: Qwen/Qwen-VL-Chat-Int4
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Agora Research
- **Model type:** Vision Language Model
- **Language(s) (NLP):** English/Chinese
- **Finetuned from model:** Qwen-VL
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/QwenLM/Qwen-VL
- **Paper:** https://arxiv.org/pdf/2308.12966.pdf
## Uses
```
import peft
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig
```
# Note: The default behavior now has injection attack prevention off.
```
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-VL",trust_remote_code=True)
model = AutoPeftModelForCausalLM.from_pretrained(
"Qwen-VL-FNCall-qlora/", # path to the output directory
device_map="cuda",
fp16=True,
trust_remote_code=True
).eval()
```
# Specify hyperparameters for generation (generation_config if transformers < 4.32.0)
```
#model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
# 1st dialogue turn
query = tokenizer.from_list_format([
{'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
{'text': "[FUNCTION CALL]"},
])
print("sending model to chat")
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
```
# Print Results
```
[FUNCTION CALL]
{{
'type': 'object',
'properties': {{
'puppy_colors': {{
'type': 'array',
'description': 'The colors of the puppies in the image.',
'items': {{
'type': 'string',
'enum': ['golden']
}}
}},
'puppy_posture': {{
'type': 'string',
'description': 'The posture of the puppies in the image.',
'enum': ['sitting']
}},
'puppy_expression': {{
'type': 'string',
'description': 'The expression of the puppies in the image.',
'enum': ['smiling']
}},
'puppy_location': {{
'type': 'string',
'description': 'The location of the puppies in the image.',
'enum': ['on a green field with orange flowers']
}},
'puppy_background': {{
'type': 'string',
'description': 'The background of the puppies in the image.',
'enum': ['green field with orange flowers']
}}
}}
}}
[EXPECTED OUTPUT]
{{
'puppy_colors': ['golden'],
'puppy_posture': 'sitting',
'puppy_expression': 'smiling',
'puppy_location': 'on a green field with orange flowers',
'puppy_background': 'green field with orange flowers'
}}
```
### Direct Use
Just send an image and put [FUNCTION CALL] in the text. Can also be used for normal qwenvl inference.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
(recommended) transformers >= 4.32.0
## How to Get Started with the Model
```
query = tokenizer.from_list_format([
{'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
{'text': "[FUNCTION CALL]"},
])
```
## Training Details
### Training Data
https://huggingface.co/datasets/AgoraX/OpenImage-FNCall-50k
### Training Procedure
qlora for 1 epoch, 1000 steps
### Framework versions
- PEFT 0.7.1 |