File size: 3,849 Bytes
521ccdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1e445
f1a89dd
 
e6d6838
521ccdb
 
 
 
 
f1a89dd
e6d6838
521ccdb
 
9f338a6
1d1e445
 
 
 
9f338a6
1d1e445
9f338a6
1d1e445
 
 
 
 
 
 
 
9f338a6
e6d6838
9f338a6
1d1e445
 
 
 
 
 
 
 
 
 
 
9f338a6
1d1e445
9f338a6
1d1e445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521ccdb
 
1d1e445
521ccdb
 
 
 
 
e6d6838
521ccdb
 
282d9f7
f1a89dd
 
 
 
282d9f7
521ccdb
 
 
 
f1a89dd
521ccdb
 
 
f1a89dd
521ccdb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
library_name: peft
base_model: Qwen/Qwen-VL-Chat-Int4
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** Agora Research
- **Model type:** Vision Language Model
- **Language(s) (NLP):** English/Chinese
- **Finetuned from model:** Qwen-VL

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/QwenLM/Qwen-VL
- **Paper:** https://arxiv.org/pdf/2308.12966.pdf

## Uses
```
import peft
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig
```
# Note: The default behavior now has injection attack prevention off.
```
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-VL",trust_remote_code=True)

model = AutoPeftModelForCausalLM.from_pretrained(
    "Qwen-VL-FNCall-qlora/", # path to the output directory
    device_map="cuda",
    fp16=True,
    trust_remote_code=True
).eval()
```
# Specify hyperparameters for generation (generation_config if transformers < 4.32.0)
```
#model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)


# 1st dialogue turn
query = tokenizer.from_list_format([
    {'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
    {'text': "[FUNCTION CALL]"},
])
print("sending model to chat")
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
```

# Print Results
```
[FUNCTION CALL]
{{
  'type': 'object',
  'properties': {{
    'puppy_colors': {{
      'type': 'array',
      'description': 'The colors of the puppies in the image.',
      'items': {{
        'type': 'string',
        'enum': ['golden']
      }}
    }},
    'puppy_posture': {{
      'type': 'string',
      'description': 'The posture of the puppies in the image.',
      'enum': ['sitting']
    }},
    'puppy_expression': {{
      'type': 'string',
      'description': 'The expression of the puppies in the image.',
      'enum': ['smiling']
    }},
    'puppy_location': {{
      'type': 'string',
      'description': 'The location of the puppies in the image.',
      'enum': ['on a green field with orange flowers']
    }},
    'puppy_background': {{
      'type': 'string',
      'description': 'The background of the puppies in the image.',
      'enum': ['green field with orange flowers']
    }}
  }}
}}

[EXPECTED OUTPUT]
{{
  'puppy_colors': ['golden'],
  'puppy_posture': 'sitting',
  'puppy_expression': 'smiling',
  'puppy_location': 'on a green field with orange flowers',
  'puppy_background': 'green field with orange flowers'
}}

```
### Direct Use

Just send an image and put [FUNCTION CALL] in the text. Can also be used for normal qwenvl inference.

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

(recommended) transformers >= 4.32.0

## How to Get Started with the Model
```
query = tokenizer.from_list_format([
    {'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
    {'text': "[FUNCTION CALL]"},
])
```
## Training Details

### Training Data

https://huggingface.co/datasets/AgoraX/OpenImage-FNCall-50k

### Training Procedure 

qlora for 1 epoch, 1000 steps

### Framework versions

- PEFT 0.7.1