|
NL: send a signal `signal.sigusr1` to the current process |
|
ref: os.kill(os.getpid(), signal.SIGUSR1) |
|
Output: proc.terminate() |
|
bleu_metric: 8.15663954186223 |
|
---------- |
|
NL: decode a hex string '4a4b4c' to utf-8. |
|
ref: bytes.fromhex('4a4b4c').decode('utf-8') |
|
Output: print(str(a.encode('hexB', 'hex')) |
|
bleu_metric: 13.947196297357516 |
|
---------- |
|
NL: check if all elements in list `mylist` are identical |
|
ref: all(x == myList[0] for x in myList) |
|
Output: len(set(mylist)) == 1 |
|
bleu_metric: 9.360791398475978 |
|
---------- |
|
NL: format number of spaces between strings `python`, `:` and `very good` to be `20` |
|
ref: print('%*s : %*s' % (20, 'Python', 20, 'Very Good')) |
|
Output: """{:,}""".format(a) |
|
bleu_metric: 7.039722936059098 |
|
---------- |
|
NL: how to convert a string from cp-1251 to utf-8? |
|
ref: d.decode('cp1251').encode('utf8') |
|
Output: urllib.parse.unquote(s.encode('utf8')) |
|
bleu_metric: 47.38611152748619 |
|
---------- |
|
NL: get rid of none values in dictionary `kwargs` |
|
ref: res = {k: v for k, v in list(kwargs.items()) if v is not None} |
|
Output: {k: v for k, v in list(d.items()) if v > 0} |
|
bleu_metric: 64.58251510057832 |
|
---------- |
|
NL: get rid of none values in dictionary `kwargs` |
|
ref: res = dict((k, v) for k, v in kwargs.items() if v is not None) |
|
Output: {k: v for k, v in list(d.items()) if v > 0} |
|
bleu_metric: 32.55630358189704 |
|
---------- |
|
NL: capture final output of a chain of system commands `ps -ef | grep something | wc -l` |
|
ref: subprocess.check_output('ps -ef | grep something | wc -l', shell=True) |
|
Output: subprocess.call('echo "foo"', shell=True) |
|
bleu_metric: 33.54121358422117 |
|
---------- |
|
NL: concatenate a list of strings `['a', 'b', 'c']` |
|
ref: """""".join(['a', 'b', 'c']) |
|
Output: print(('a', 'b', 'c')) |
|
bleu_metric: 42.80768209469581 |
|
---------- |
|
NL: find intersection data between series `s1` and series `s2` |
|
ref: pd.Series(list(set(s1).intersection(set(s2)))) |
|
Output: s1 = pd.DataFrame(s1, s2=None) |
|
bleu_metric: 10.722703083793286 |
|
---------- |
|
NL: sending http headers to `client` |
|
ref: client.send('HTTP/1.0 200 OK\r\n') |
|
Output: s.send('HTTP/1.0 200 OK\r\n') |
|
bleu_metric: 94.57416090031758 |
|
---------- |
|
NL: format a datetime string `when` to extract date only |
|
ref: then = datetime.datetime.strptime(when, '%Y-%m-%d').date() |
|
Output: dt.strftime('%m/%d/%Y') |
|
bleu_metric: 10.693730801587432 |
|
---------- |
|
NL: split a multi-line string `inputstring` into separate strings |
|
ref: inputString.split('\n') |
|
Output: a, b, c = input('string_escape') |
|
bleu_metric: 21.972813874997158 |
|
---------- |
|
NL: split a multi-line string ` a \n b \r\n c ` by new line character `\n` |
|
ref: ' a \n b \r\n c '.split('\n') |
|
Output: a.rstrip().split('\n') |
|
bleu_metric: 38.90205926838098 |
|
---------- |
|
NL: concatenate elements of list `b` by a colon ":" |
|
ref: """:""".join(str(x) for x in b) |
|
Output: print(repr(a)) |
|
bleu_metric: 4.9422115544674705 |
|
---------- |
|
NL: get the first object from a queryset in django model `entry` |
|
ref: Entry.objects.filter()[:1].get() |
|
Output: Entry.objects.get_values('id') |
|
bleu_metric: 23.929967984761056 |
|
---------- |
|
NL: calculate sum over all rows of 2d numpy array |
|
ref: a.sum(axis=1) |
|
Output: np.sum(a.shape[1:]) |
|
bleu_metric: 24.022110864391532 |
|
---------- |
|
NL: enable warnings using action 'always' |
|
ref: warnings.simplefilter('always') |
|
Output: os.kill(logging.DEBUG) |
|
bleu_metric: 21.105340631872636 |
|
---------- |
|
NL: concatenate items of list `l` with a space ' ' |
|
ref: print(' '.join(map(str, l))) |
|
Output: print(' '.join(map(str, l)) |
|
bleu_metric: 91.69729150999534 |
|
---------- |
|
NL: run script 'hello.py' with argument 'htmlfilename.htm' on terminal using python executable |
|
ref: subprocess.call(['python.exe', 'hello.py', 'htmlfilename.htm']) |
|
Output: subprocess.call('start "$file.py', shell=True) |
|
bleu_metric: 24.391589282046496 |
|
---------- |
|
NL: how can i parse a time string containing milliseconds in it with python? |
|
ref: time.strptime('30/03/09 16:31:32.123', '%d/%m/%y %H:%M:%S.%f') |
|
Output: time.strftime('%H:%M:%S,%f')) |
|
bleu_metric: 19.792633055621124 |
|
---------- |
|
NL: convert a string `my_string` with dot and comma into a float number `my_float` |
|
ref: my_float = float(my_string.replace(',', '')) |
|
Output: my_string.replace(',', '') |
|
bleu_metric: 62.69839476367552 |
|
---------- |
|
NL: convert a string `123,456.908` with dot and comma into a floating number |
|
ref: float('123,456.908'.replace(',', '')) |
|
Output: print(', '.join(str(12345)) |
|
bleu_metric: 21.93127055132894 |
|
---------- |
|
NL: set pythonpath in python script. |
|
ref: sys.path.append('/path/to/whatever') |
|
Output: os.path.abspath(__file__) |
|
bleu_metric: 14.91608246051739 |
|
---------- |
|
NL: split string 'words, words, words.' using a regex '(\\w+)' |
|
ref: re.split('(\\W+)', 'Words, words, words.') |
|
Output: re.split('\\b(\\w+)', 'Words, words, words.') |
|
bleu_metric: 71.4022021970798 |
|
---------- |
|
NL: open a file `output.txt` in append mode |
|
ref: file = open('Output.txt', 'a') |
|
Output: f = open('file.txt', 'r') |
|
bleu_metric: 54.7332024239071 |
|
---------- |
|
NL: download a file "http://www.example.com/songs/mp3.mp3" over http and save to "mp3.mp3" |
|
ref: urllib.request.urlretrieve('http://www.example.com/songs/mp3.mp3', 'mp3.mp3') |
|
Output: urllib.request.urlretrieve('http://randomsite.com/', 'rb').read() |
|
bleu_metric: 45.9127788668896 |
|
---------- |
|
NL: download a file `url` over http and save to `file_name` |
|
ref: u = urllib.request.urlopen(url) |
|
Output: file_name = wget.urlretrieve('http://example.com/file.gz') |
|
bleu_metric: 9.449865252803164 |
|
---------- |
|
NL: download a file 'http://www.example.com/' over http |
|
ref: response = urllib.request.urlopen('http://www.example.com/') |
|
html = response.read() |
|
Output: urllib.request.urlretrieve('http://www.com/file.com/file.gz') |
|
bleu_metric: 41.91356463630533 |
|
---------- |
|
NL: download a file `url` over http |
|
ref: r = requests.get(url) |
|
Output: urllib.request.urlretrieve('http://example.com/file.com/file.gz') |
|
bleu_metric: 7.265857755970445 |
|
---------- |
|
NL: download a file `url` over http and save to "10mb" |
|
ref: response = requests.get(url, stream=True) |
|
Output: urllib.request.urlretrieve('http://example.com/file.gz', 'file.gz') |
|
bleu_metric: 7.029695662739608 |
|
---------- |
|
NL: argparse add argument with flag '--version' and version action of '%(prog)s 2.0' to parser `parser` |
|
ref: parser.add_argument('--version', action='version', version='%(prog)s 2.0') |
|
Output: parser.add_argument('--conf', nargs='*') |
|
bleu_metric: 24.648885368725924 |
|
---------- |
|
NL: remove key 'c' from dictionary `d` |
|
ref: {i: d[i] for i in d if i != 'c'} |
|
Output: d = {'a': 1, 'c': 2, 'c': 3, 'c': 3} |
|
bleu_metric: 10.884267615693712 |
|
---------- |
|
NL: create new dataframe object by merging columns "key" of dataframes `split_df` and `csv_df` and rename the columns from dataframes `split_df` and `csv_df` with suffix `_left` and `_right` respectively |
|
ref: pd.merge(split_df, csv_df, on=['key'], suffixes=('_left', '_right')) |
|
Output: pd.concat([df_1, df_2.columns], axis=1, on=['A_B', 'B' |
|
bleu_metric: 24.624806058504372 |
|
---------- |
|
NL: split a string `s` by space with `4` splits |
|
ref: s.split(' ', 4) |
|
Output: re.split('\\s+|\\S+', s) |
|
bleu_metric: 23.58844810653421 |
|
---------- |
|
NL: read keyboard-input |
|
ref: input('Enter your input:') |
|
Output: sys.stdout.flush() |
|
bleu_metric: 17.6625510283176 |
|
---------- |
|
NL: enable debug mode on flask application `app` |
|
ref: app.run(debug=True) |
|
Output: app.run(debug=True) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: python save list `mylist` to file object 'save.txt' |
|
ref: pickle.dump(mylist, open('save.txt', 'wb')) |
|
Output: file.write('myfile.txt', 'wb') |
|
bleu_metric: 42.60520663282873 |
|
---------- |
|
NL: multiply a matrix `p` with a 3d tensor `t` in scipy |
|
ref: scipy.tensordot(P, T, axes=[1, 1]).swapaxes(0, 1) |
|
Output: np.dot(x.reshape(-1, 3), np.dot(0, 1, 0, 1)) |
|
bleu_metric: 22.78371390626513 |
|
---------- |
|
NL: create 3d array of zeroes of size `(3,3,3)` |
|
ref: numpy.zeros((3, 3, 3)) |
|
Output: np.zeros((3, 3)) |
|
bleu_metric: 75.33808072882879 |
|
---------- |
|
NL: cut off the last word of a sentence `content` |
|
ref: """ """.join(content.split(' ')[:-1]) |
|
Output: """ """.join(s.split()) |
|
bleu_metric: 46.40451719480771 |
|
---------- |
|
NL: convert scalar `x` to array |
|
ref: x = np.asarray(x).reshape(1, -1)[(0), :] |
|
Output: np.zeros((x, x) for x in s) |
|
bleu_metric: 9.777229794850028 |
|
---------- |
|
NL: sum all elements of nested list `l` |
|
ref: sum(sum(i) if isinstance(i, list) else i for i in L) |
|
Output: sum(lst) |
|
bleu_metric: 1.841640459320245 |
|
---------- |
|
NL: convert hex string '470fc614' to a float number |
|
ref: struct.unpack('!f', '470FC614'.decode('hex'))[0] |
|
Output: struct.unpack('d', struct.pack('0x1252', 'F6d0424a'))[0] |
|
bleu_metric: 48.34492705061849 |
|
---------- |
|
NL: multiple each value by `2` for all keys in a dictionary `my_dict` |
|
ref: my_dict.update((x, y * 2) for x, y in list(my_dict.items())) |
|
Output: dict((k, v) for k, v in my_dict.items()) |
|
bleu_metric: 28.26550613903659 |
|
---------- |
|
NL: running bash script 'sleep.sh' |
|
ref: subprocess.call('sleep.sh', shell=True) |
|
Output: subprocess.call('start command -c 'r', shell=True) |
|
bleu_metric: 55.7853798004205 |
|
---------- |
|
NL: join elements of list `l` with a comma `,` |
|
ref: """,""".join(l) |
|
Output: [y for x in L for y in x if x.startswith(''.join(',')] |
|
bleu_metric: 22.50265947708922 |
|
---------- |
|
NL: make a comma-separated string from a list `mylist` |
|
ref: myList = ','.join(map(str, myList)) |
|
Output: myList = mylist[:n] |
|
bleu_metric: 10.218289380194193 |
|
---------- |
|
NL: reverse the list that contains 1 to 10 |
|
ref: list(reversed(list(range(10)))) |
|
Output: L[::-1] |
|
bleu_metric: 7.575149194183216 |
|
---------- |
|
NL: remove substring 'bag,' from a string 'lamp, bag, mirror' |
|
ref: print('lamp, bag, mirror'.replace('bag,', '')) |
|
Output: [m.strip() for m in x if m.endswith('@')] |
|
bleu_metric: 10.616735292999413 |
|
---------- |
|
NL: reverse the order of words, delimited by `.`, in string `s` |
|
ref: """.""".join(s.split('.')[::-1]) |
|
Output: sorted(s, key=lambda s: s.split('.') if s else s s[1])) |
|
bleu_metric: 35.65843931149688 |
|
---------- |
|
NL: convert epoch time represented as milliseconds `s` to string using format '%y-%m-%d %h:%m:%s.%f' |
|
ref: datetime.datetime.fromtimestamp(s).strftime('%Y-%m-%d %H:%M:%S.%f') |
|
Output: print(s.strftime('%Y-%m-%d %H:%M:%S')) |
|
bleu_metric: 62.56418230541474 |
|
---------- |
|
NL: parse milliseconds epoch time '1236472051807' to format '%y-%m-%d %h:%m:%s' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(1236472051807 / 1000.0)) |
|
Output: time.strftime('%Y-%m-%d %H:%M:%S') |
|
bleu_metric: 59.71758060527691 |
|
---------- |
|
NL: get the date 7 days before the current date |
|
ref: (datetime.datetime.now() - datetime.timedelta(days=7)).date() |
|
Output: (datetime.date(2010, 12, 31) + relativedelta(months=(+ 1))) |
|
bleu_metric: 23.713320246552005 |
|
---------- |
|
NL: sum elements at index `column` of each list in list `data` |
|
ref: print(sum(row[column] for row in data)) |
|
Output: data[sum(b) for b in zip(*data)] |
|
bleu_metric: 15.844501337268929 |
|
---------- |
|
NL: sum columns of a list `array` |
|
ref: [sum(row[i] for row in array) for i in range(len(array[0]))] |
|
Output: sum(sum(row[:, (1)] for row in mylist) |
|
bleu_metric: 21.03312756130989 |
|
---------- |
|
NL: encode binary string 'your string' to base64 code |
|
ref: base64.b64encode(bytes('your string', 'utf-8')) |
|
Output: print(content.encode('base64')) |
|
bleu_metric: 20.291424899466545 |
|
---------- |
|
NL: combine list of dictionaries `dicts` with the same keys in each list to a single dictionary |
|
ref: dict((k, [d[k] for d in dicts]) for k in dicts[0]) |
|
Output: dict((k, v) for d in dicts for k, v in list(d.items()) if k in d] |
|
bleu_metric: 28.548259613272815 |
|
---------- |
|
NL: merge a nested dictionary `dicts` into a flat dictionary by concatenating nested values with the same key `k` |
|
ref: {k: [d[k] for d in dicts] for k in dicts[0]} |
|
Output: dict((k, v) for k, v in list(d.items())) |
|
bleu_metric: 8.608775825594615 |
|
---------- |
|
NL: how do i get the url parameter in a flask view |
|
ref: request.args['myParam'] |
|
Output: request.url |
|
bleu_metric: 6.856953606192477 |
|
---------- |
|
NL: identify duplicate values in list `mylist` |
|
ref: [k for k, v in list(Counter(mylist).items()) if v > 1] |
|
Output: set(mylist)) |
|
bleu_metric: 2.0605095345578897 |
|
---------- |
|
NL: insert directory 'apps' into directory `__file__` |
|
ref: sys.path.insert(1, os.path.join(os.path.dirname(__file__), 'apps')) |
|
Output: os.chdir(path) |
|
bleu_metric: 1.4431184819037772 |
|
---------- |
|
NL: modify sys.path for python module `subdir` |
|
ref: sys.path.append(os.path.join(os.path.dirname(__file__), 'subdir')) |
|
Output: my_path.append('/path/to/my_file.txt') |
|
bleu_metric: 10.285502024406256 |
|
---------- |
|
NL: insert a 'none' value into a sqlite3 table. |
|
ref: db.execute("INSERT INTO present VALUES('test2', ?, 10)", (None,)) |
|
Output: cursor.execute('insert into example values values values)') |
|
bleu_metric: 14.095580788435447 |
|
---------- |
|
NL: flatten list `list_of_menuitems` |
|
ref: [image for menuitem in list_of_menuitems for image in menuitem] |
|
Output: list_of_lists = [list(f) for f in my_list] |
|
bleu_metric: 14.949751774990682 |
|
---------- |
|
NL: append elements of a set `b` to a list `a` |
|
ref: a.extend(b) |
|
Output: a.append(b) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: append elements of a set to a list in python |
|
ref: a.extend(list(b)) |
|
Output: a.extend(b) |
|
bleu_metric: 46.81294641285289 |
|
---------- |
|
NL: write the data of dataframe `df` into text file `np.txt` |
|
ref: np.savetxt('c:\\data\\np.txt', df.values, fmt='%d') |
|
Output: df.write.txt', header=None, delimiter='\t') |
|
bleu_metric: 17.503492126188856 |
|
---------- |
|
NL: write content of dataframe `df` into text file 'c:\\data\\pandas.txt' |
|
ref: df.to_csv('c:\\data\\pandas.txt', header=None, index=None, sep=' ', mode='a') |
|
Output: df.to_csv('c:\\data\\data\\t.txt', sep='\t') |
|
bleu_metric: 45.493235468867745 |
|
---------- |
|
NL: split a string `x` by last occurrence of character `-` |
|
ref: print(x.rpartition('-')[0]) |
|
Output: x.split('\\d+', s) |
|
bleu_metric: 16.460024863157845 |
|
---------- |
|
NL: get the last part of a string before the character '-' |
|
ref: print(x.rsplit('-', 1)[0]) |
|
Output: print(x.rfind('-')[0]) |
|
bleu_metric: 60.109065739327065 |
|
---------- |
|
NL: upload file using ftp |
|
ref: ftp.storlines('STOR ' + filename, open(filename, 'r')) |
|
Output: ftp.quit() |
|
bleu_metric: 3.710176016036221 |
|
---------- |
|
NL: add one to the hidden web element with id 'xyz' with selenium python script |
|
ref: browser.execute_script("document.getElementById('XYZ').value+='1'") |
|
Output: driver.find_element_by_xpath("//li/label/input[contains(..,'polishpottery')]") |
|
bleu_metric: 13.25451214611751 |
|
---------- |
|
NL: create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]` |
|
ref: np.maximum([2, 3, 4], [1, 5, 2]) |
|
Output: np.array([1, 2, 3], [2, 3, 4], [3, 4, 5]]) |
|
bleu_metric: 42.651255482235264 |
|
---------- |
|
NL: print a list `l` and move first 3 elements to the end of the list |
|
ref: print(l[3:] + l[:3]) |
|
Output: print(l[:5] + l[0]) |
|
bleu_metric: 50.02460338549947 |
|
---------- |
|
NL: loop over files in directory '.' |
|
ref: for fn in os.listdir('.'): |
|
Output: for os.path.join(path, filename) |
|
bleu_metric: 16.07716496330015 |
|
---------- |
|
NL: loop over files in directory `source` |
|
ref: for (root, dirs, filenames) in os.walk(source): |
|
Output: for os.path.join(path, filename) |
|
bleu_metric: 11.519792081464464 |
|
---------- |
|
NL: create a random list of integers |
|
ref: [int(1000 * random.random()) for i in range(10000)] |
|
Output: randomList = [random.random() for _ in range(10)] |
|
bleu_metric: 34.3414769312466 |
|
---------- |
|
NL: using %f with strftime() in python to get microseconds |
|
ref: datetime.datetime.now().strftime('%H:%M:%S.%f') |
|
Output: datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
bleu_metric: 65.15366202853991 |
|
---------- |
|
NL: google app engine execute gql query 'select * from schedule where station = $1' with parameter `foo.key()` |
|
ref: db.GqlQuery('SELECT * FROM Schedule WHERE station = $1', foo.key()) |
|
Output: c.execute('SELECT * FROM foo WHERE bar = %s AND baz = %s', (param1, param2)) |
|
bleu_metric: 24.090844358935918 |
|
---------- |
|
NL: filter rows in pandas starting with alphabet 'f' using regular expression. |
|
ref: df.b.str.contains('^f') |
|
Output: df.dropna(lambda x: x.replace('\\[^\\w\\s]', 'A') |
|
bleu_metric: 10.727295782787309 |
|
---------- |
|
NL: print a 2 dimensional list `tab` as a table with delimiters |
|
ref: print('\n'.join('\t'.join(str(col) for col in row) for row in tab)) |
|
Output: print('\n'.join(map(str, row)) |
|
bleu_metric: 26.894705347686966 |
|
---------- |
|
NL: pandas: delete rows in dataframe `df` based on multiple columns values |
|
ref: df.set_index(list('BC')).drop(tuples, errors='ignore').reset_index() |
|
Output: df.drop(df.index[[1, 3]], axis=1) |
|
bleu_metric: 11.446641525222896 |
|
---------- |
|
NL: format the variables `self.goals` and `self.penalties` using string formatting |
|
ref: """({:d} goals, ${:d})""".format(self.goals, self.penalties) |
|
Output: """{0} {1}""".format(name='bar', 'change!') |
|
bleu_metric: 28.1073423324667 |
|
---------- |
|
NL: format string "({} goals, ${})" with variables `goals` and `penalties` |
|
ref: """({} goals, ${})""".format(self.goals, self.penalties) |
|
Output: """{} {}""".format(TotalAmount) |
|
bleu_metric: 30.199592877917368 |
|
---------- |
|
NL: format string "({0.goals} goals, ${0.penalties})" |
|
ref: """({0.goals} goals, ${0.penalties})""".format(self) |
|
Output: """{0} {1}""".format(name, 20) |
|
bleu_metric: 32.37295639418319 |
|
---------- |
|
NL: convert list of lists `l` to list of integers |
|
ref: [int(''.join(str(d) for d in x)) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 26.91716452870884 |
|
---------- |
|
NL: combine elements of each list in list `l` into digits of a single integer |
|
ref: [''.join(str(d) for d in x) for x in L] |
|
Output: int(''.join(map(str, list)) |
|
bleu_metric: 23.011232462942058 |
|
---------- |
|
NL: convert a list of lists `l` to list of integers |
|
ref: L = [int(''.join([str(y) for y in x])) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 18.058610039563465 |
|
---------- |
|
NL: write the elements of list `lines` concatenated by special character '\n' to file `myfile` |
|
ref: myfile.write('\n'.join(lines)) |
|
Output: with open('myfile.txt', 'w').read().write('\n') |
|
bleu_metric: 30.77874158297155 |
|
---------- |
|
NL: removing an element from a list based on a predicate 'x' or 'n' |
|
ref: [x for x in ['AAT', 'XAC', 'ANT', 'TTA'] if 'X' not in x and 'N' not in x] |
|
Output: [x for x in L if x is not None] |
|
bleu_metric: 7.979312731505724 |
|
---------- |
|
NL: remove duplicate words from a string `text` using regex |
|
ref: text = re.sub('\\b(\\w+)( \\1\\b)+', '\\1', text) |
|
Output: re.sub('(?<=[a-z])\\r?\\w+', '\\1', s) |
|
bleu_metric: 43.796510807866646 |
|
---------- |
|
NL: count non zero values in each column in pandas data frame |
|
ref: df.astype(bool).sum(axis=1) |
|
Output: df.apply(lambda x: 0).sum() if sum(x) > 1) |
|
bleu_metric: 23.20305803246989 |
|
---------- |
|
NL: search for string that matches regular expression pattern '(?<!distillr)\\\\acrotray\\.exe' in string 'c:\\somedir\\acrotray.exe' |
|
ref: re.search('(?<!Distillr)\\\\AcroTray\\.exe', 'C:\\SomeDir\\AcroTray.exe') |
|
Output: re.findall('(?<=\\w+)\\n|[^\\w+)\\n]*', mystring) |
|
bleu_metric: 20.693739176213647 |
|
---------- |
|
NL: split string 'qh qd jc kd js' into a list on white spaces |
|
ref: """QH QD JC KD JS""".split() |
|
Output: [i.strip() for i in line.split()] |
|
bleu_metric: 21.86976686325118 |
|
---------- |
|
NL: search for occurrences of regex pattern '>.*<' in xml string `line` |
|
ref: print(re.search('>.*<', line).group(0)) |
|
Output: print(re.search('(?<=\\w+)', line)) |
|
bleu_metric: 47.71512105691513 |
|
---------- |
|
NL: erase all the contents of a file `filename` |
|
ref: open(filename, 'w').close() |
|
Output: open('filename', 'w').close() |
|
bleu_metric: 70.98108717509044 |
|
---------- |
|
NL: convert a string into datetime using the format '%y-%m-%d %h:%m:%s.%f' |
|
ref: datetime.datetime.strptime(string_date, '%Y-%m-%d %H:%M:%S.%f') |
|
Output: datetime.strptime('2010-11-13 10:33:54.227806', '%Y-%m-%d |
|
bleu_metric: 40.88633662916028 |
|
---------- |
|
NL: find the index of a list with the first element equal to '332' within the list of lists `thelist` |
|
ref: [index for index, item in enumerate(thelist) if item[0] == '332'] |
|
Output: [i for i, v in enumerate(L) if v[0] == 'id' in x] |
|
bleu_metric: 33.034466035625115 |
|
---------- |
|
NL: lower a string `text` and remove non-alphanumeric characters aside from space |
|
ref: re.sub('[^\\sa-zA-Z0-9]', '', text).lower().strip() |
|
Output: re.sub('[^\\w-zA-Z0-9]','', text) |
|
bleu_metric: 64.45968952353843 |
|
---------- |
|
NL: remove all non-alphanumeric characters except space from a string `text` and lower it |
|
ref: re.sub('(?!\\s)[\\W_]', '', text).lower().strip() |
|
Output: re.sub('[^0-9a-zA-Z0-9]', '', text) |
|
bleu_metric: 34.05969875105766 |
|
---------- |
|
NL: subscript text 'h20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='H\u2082O') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: subscript text 'h20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='$H_2O$') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: loop over a list `mylist` if sublists length equals 3 |
|
ref: [x for x in mylist if len(x) == 3] |
|
Output: [(x + 1) for x in mylist] |
|
bleu_metric: 27.97803653491597 |
|
---------- |
|
NL: initialize a list `lst` of 100 objects object() |
|
ref: lst = [Object() for _ in range(100)] |
|
Output: [item for item in lst] |
|
bleu_metric: 11.786767588753086 |
|
---------- |
|
NL: create list `lst` containing 100 instances of object `object` |
|
ref: lst = [Object() for i in range(100)] |
|
Output: [x for x in lst if x is not None] |
|
bleu_metric: 13.386745323687673 |
|
---------- |
|
NL: get the content of child tag with`href` attribute whose parent has css `someclass` |
|
ref: self.driver.find_element_by_css_selector('.someclass a').get_attribute('href') |
|
Output: soup.find_all('a', {'id':'st,'st_name':'st/content': 'content'} |
|
bleu_metric: 7.478822222889464 |
|
---------- |
|
NL: joining data from dataframe `df1` with data from dataframe `df2` based on matching values of column 'date_time' in both dataframes |
|
ref: df1.merge(df2, on='Date_Time') |
|
Output: pd.merge(df1, df2, how='inner', on=['user_id']) |
|
bleu_metric: 18.70222963555319 |
|
---------- |
|
NL: use `%s` operator to print variable values `str1` inside a string |
|
ref: 'first string is: %s, second one is: %s' % (str1, 'geo.tif') |
|
Output: print('{0}'.format(num)) |
|
bleu_metric: 5.68097120736594 |
|
---------- |
|
NL: split a string by a delimiter in python |
|
ref: [x.strip() for x in '2.MATCHES $$TEXT$$ STRING'.split('$$TEXT$$')] |
|
Output: a.split('=') |
|
bleu_metric: 2.904501569386027 |
|
---------- |
|
NL: check if directory `directory ` exists and create it if necessary |
|
ref: if (not os.path.exists(directory)): |
|
os.makedirs(directory) |
|
Output: if (not os.path.exists(directory)): |
|
os.makedirs(directory) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: distutils.dir_util.mkpath(path) |
|
Output: os.makedirs(path) |
|
bleu_metric: 40.661103887968814 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: distutils.dir_util.mkpath(path) |
|
Output: os.makedirs(path) |
|
bleu_metric: 40.661103887968814 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: os.makedirs(path) |
|
Output: os.makedirs(path) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: replace a separate word 'h3' by 'h1' in a string 'text' |
|
ref: re.sub('\\bH3\\b', 'H1', text) |
|
Output: re.sub('(?<!\\w+)', '\\1\\1', 'h2'), 'h2'), ('h2', |
|
bleu_metric: 18.81434448407342 |
|
---------- |
|
NL: substitute ascii letters in string 'aas30dsa20' with empty string '' |
|
ref: re.sub('\\D', '', 'aas30dsa20') |
|
Output: """""".join(str(i) for i in s if i.isdigit()) |
|
bleu_metric: 9.408196821068621 |
|
---------- |
|
NL: get digits only from a string `aas30dsa20` using lambda function |
|
ref: """""".join([x for x in 'aas30dsa20' if x.isdigit()]) |
|
Output: map(int, mystring.split(' ', 1)[0] |
|
bleu_metric: 7.1335710240663 |
|
---------- |
|
NL: access a tag called "name" in beautifulsoup `soup` |
|
ref: print(soup.find('name').string) |
|
Output: soup.findAll(text='Python') |
|
bleu_metric: 22.779746815932338 |
|
---------- |
|
NL: get a dictionary `records` of key-value pairs in pymongo cursor `cursor` |
|
ref: records = dict((record['_id'], record) for record in cursor) |
|
Output: db.find({'class': {'section': {'}, {'$': {'section': 'Markus': {'}, { |
|
bleu_metric: 4.175415561574825 |
|
---------- |
|
NL: create new matrix object by concatenating data from matrix a and matrix b |
|
ref: np.concatenate((A, B)) |
|
Output: A = np.array([[i, j]) for i in range(1, len(a), 2))] |
|
bleu_metric: 7.939087147543495 |
|
---------- |
|
NL: concat two matrices `a` and `b` in numpy |
|
ref: np.vstack((A, B)) |
|
Output: np.concatenate((a, b)) |
|
bleu_metric: 29.502343631964045 |
|
---------- |
|
NL: get the characters count in a file `filepath` |
|
ref: os.stat(filepath).st_size |
|
Output: sum(os.path.join(path) |
|
bleu_metric: 17.827531042796256 |
|
---------- |
|
NL: count the occurrences of item "a" in list `l` |
|
ref: l.count('a') |
|
Output: Counter(x in a for x in a) |
|
bleu_metric: 17.03318603763928 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: Counter(l) |
|
Output: Counter(l) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: [[x, l.count(x)] for x in set(l)] |
|
Output: Counter(l) |
|
bleu_metric: 2.190091937500515 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: dict(((x, l.count(x)) for x in set(l))) |
|
Output: Counter(l) |
|
bleu_metric: 1.5775358510206974 |
|
---------- |
|
NL: count the occurrences of item "b" in list `l` |
|
ref: l.count('b') |
|
Output: Counter(x in a for x in set(l)] |
|
bleu_metric: 11.114924776032007 |
|
---------- |
|
NL: copy file `srcfile` to directory `dstdir` |
|
ref: shutil.copy(srcfile, dstdir) |
|
Output: shutil.copyfile(file_file, file) |
|
bleu_metric: 25.406637407730738 |
|
---------- |
|
NL: find the key associated with the largest value in dictionary `x` whilst key is non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(a, key=lambda x: x[x]) |
|
bleu_metric: 10.970270231176839 |
|
---------- |
|
NL: get the largest key whose not associated with value of 0 in dictionary `x` |
|
ref: (k for k, v in x.items() if v != 0) |
|
Output: (k for k, v in x.items() if v!= 0) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get the largest key in a dictionary `x` with non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(k, v) |
|
bleu_metric: 8.44727061998314 |
|
---------- |
|
NL: put the curser at beginning of the file |
|
ref: file.seek(0) |
|
Output: subprocess.call('mv /Foo/', 'r', shell=True) |
|
bleu_metric: 9.134423666564473 |
|
---------- |
|
NL: combine values from column 'b' and column 'a' of dataframe `df` into column 'c' of datafram `df` |
|
ref: df['c'] = np.where(df['a'].isnull, df['b'], df['a']) |
|
Output: df['c'] = df['b'].fillna(df['a']) |
|
bleu_metric: 50.85465237405449 |
|
---------- |
|
NL: remove key 'ele' from dictionary `d` |
|
ref: del d['ele'] |
|
Output: d = {key: val for key, val in list(d.items()) if val!= 42} |
|
bleu_metric: 5.166045454134253 |
|
---------- |
|
NL: update datetime field in `mymodel` to be the existing `timestamp` plus 100 years |
|
ref: MyModel.objects.update(timestamp=F('timestamp') + timedelta(days=36524.25)) |
|
Output: datetime.datetime.now().strftime('%Y-%m-%d') |
|
bleu_metric: 10.00116481297629 |
|
---------- |
|
NL: merge list `['it']` and list `['was']` and list `['annoying']` into one list |
|
ref: ['it'] + ['was'] + ['annoying'] |
|
Output: ['a', 'b', 'c', 'd'] |
|
bleu_metric: 19.408623270627203 |
|
---------- |
|
NL: increment a value with leading zeroes in a number `x` |
|
ref: str(int(x) + 1).zfill(len(x)) |
|
Output: x ='+ str(x) |
|
bleu_metric: 13.057811073335992 |
|
---------- |
|
NL: check if a pandas dataframe `df`'s index is sorted |
|
ref: all(df.index[:-1] <= df.index[1:]) |
|
Output: df.sort_index() |
|
bleu_metric: 3.1405961937021267 |
|
---------- |
|
NL: convert tuple `t` to list |
|
ref: list(t) |
|
Output: tuple(t) |
|
bleu_metric: 75.98356856515926 |
|
---------- |
|
NL: convert list `t` to tuple |
|
ref: tuple(l) |
|
Output: tuple(l) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert tuple `level1` to list |
|
ref: level1 = map(list, level1) |
|
Output: list1 = [item[0] for item in L] |
|
bleu_metric: 10.571070857151538 |
|
---------- |
|
NL: send the output of pprint object `dataobject` to file `logfile` |
|
ref: pprint.pprint(dataobject, logFile) |
|
Output: print(data.read()) |
|
bleu_metric: 18.885888592159468 |
|
---------- |
|
NL: get index of rows in column 'boolcol' |
|
ref: df.loc[df['BoolCol']] |
|
Output: df.index |
|
bleu_metric: 2.5225322607845957 |
|
---------- |
|
NL: create a list containing the indexes of rows where the value of column 'boolcol' in dataframe `df` are equal to true |
|
ref: df.iloc[np.flatnonzero(df['BoolCol'])] |
|
Output: df[df.columns[df['Value'].isin(id=['Value'] == 'foo']))] |
|
bleu_metric: 14.614460466911597 |
|
---------- |
|
NL: get list of indexes of rows where column 'boolcol' values match true |
|
ref: df[df['BoolCol'] == True].index.tolist() |
|
Output: [df.index.tolist() for index in l] |
|
bleu_metric: 31.04879110800733 |
|
---------- |
|
NL: get index of rows in dataframe `df` which column 'boolcol' matches value true |
|
ref: df[df['BoolCol']].index.tolist() |
|
Output: df.loc[df['a'].isin(['a', 'b'])] |
|
bleu_metric: 19.35951733925871 |
|
---------- |
|
NL: change working directory to the directory `owd` |
|
ref: os.chdir(owd) |
|
Output: os.chdir(os.path.dirname(os.path.abspath(__file__)) |
|
bleu_metric: 19.554016376461796 |
|
---------- |
|
NL: insert data from a string `testfield` to sqlite db `c` |
|
ref: c.execute("INSERT INTO test VALUES (?, 'bar')", (testfield,)) |
|
Output: cursor.execute('SELECT * FROM table WHERE bar" FROM table WHERE column IN %s;+$', (1,)) |
|
bleu_metric: 24.03479325641683 |
|
---------- |
|
NL: decode string "\\x89\\n" into a normal string |
|
ref: """\\x89\\n""".decode('string_escape') |
|
Output: """\\xc3\\x85あ""".encode('utf-8') |
|
bleu_metric: 41.902845957302084 |
|
---------- |
|
NL: convert a raw string `raw_string` into a normal string |
|
ref: raw_string.decode('string_escape') |
|
Output: raw_string.decode('unicode_escape') |
|
bleu_metric: 65.80370064762462 |
|
---------- |
|
NL: convert a raw string `raw_byte_string` into a normal string |
|
ref: raw_byte_string.decode('unicode_escape') |
|
Output: raw_string.decode('unicode_escape') |
|
bleu_metric: 88.01117367933934 |
|
---------- |
|
NL: split a string `s` with into all strings of repeated characters |
|
ref: [m.group(0) for m in re.finditer('(\\d)\\1*', s)] |
|
Output: re.findall('\\w+', s) |
|
bleu_metric: 10.45716776939666 |
|
---------- |
|
NL: scatter a plot with x, y position of `np.random.randn(100)` and face color equal to none |
|
ref: plt.scatter(np.random.randn(100), np.random.randn(100), facecolors='none') |
|
Output: plt.show() |
|
bleu_metric: 0.8278521686370256 |
|
---------- |
|
NL: do a scatter plot with empty circles |
|
ref: plt.plot(np.random.randn(100), np.random.randn(100), 'o', mfc='none') |
|
Output: plt.scatter(np.random.randn(100), np.random.randn(100), np.randn(100 |
|
bleu_metric: 57.932844496915834 |
|
---------- |
|
NL: remove a div with a id `main-content` using beautifulsoup |
|
ref: soup.find('div', id='main-content').decompose() |
|
Output: soup.findAll(text='div', id='width=True) |
|
bleu_metric: 40.78097038402287 |
|
---------- |
|
NL: filter rows containing key word `ball` in column `ids` |
|
ref: df[df['ids'].str.contains('ball')] |
|
Output: print(df.query('User')['value'].filter(lambda x: x.year)) |
|
bleu_metric: 13.348189438082967 |
|
---------- |
|
NL: convert index at level 0 into a column in dataframe `df` |
|
ref: df.reset_index(level=0, inplace=True) |
|
Output: df.set_index([' 0', '0']) |
|
bleu_metric: 15.310245441182444 |
|
---------- |
|
NL: add indexes in a data frame `df` to a column `index1` |
|
ref: df['index1'] = df.index |
|
Output: df.set_index(['index', 'date']) |
|
bleu_metric: 16.451929399933107 |
|
---------- |
|
NL: convert pandas index in a dataframe to columns |
|
ref: df.reset_index(level=['tick', 'obs']) |
|
Output: df2 = df.set_index(['T', 'level2']) |
|
bleu_metric: 33.23485859915788 |
|
---------- |
|
NL: get reverse of list items from list 'b' using extended slicing |
|
ref: [x[::-1] for x in b] |
|
Output: [zip(b[::-1]) for b in a] |
|
bleu_metric: 39.392473548207036 |
|
---------- |
|
NL: join each element in array `a` with element at the same index in array `b` as a tuple |
|
ref: np.array([zip(x, y) for x, y in zip(a, b)]) |
|
Output: [(a, b), (b, b)] |
|
bleu_metric: 22.319313765733384 |
|
---------- |
|
NL: zip two 2-d arrays `a` and `b` |
|
ref: np.array(zip(a.ravel(), b.ravel()), dtype='i4,i4').reshape(a.shape) |
|
Output: np.array(a) |
|
bleu_metric: 1.1785360562036349 |
|
---------- |
|
NL: convert list `list_of_ints` into a comma separated string |
|
ref: """,""".join([str(i) for i in list_of_ints]) |
|
Output: print(', '.join(l[:1]) |
|
bleu_metric: 22.587773654803488 |
|
---------- |
|
NL: send a post request with raw data `data` and basic authentication with `username` and `password` |
|
ref: requests.post(url, data=DATA, headers=HEADERS_DICT, auth=(username, password)) |
|
Output: requests.get('https://username/post', json={'data': 'cheers'}) |
|
bleu_metric: 9.052524251044028 |
|
---------- |
|
NL: find last occurrence of character '}' in string "abcd}def}" |
|
ref: 'abcd}def}'.rfind('}') |
|
Output: """{:.5}""".format(p.finditer('_') |
|
bleu_metric: 15.007375127940442 |
|
---------- |
|
NL: iterate ove list `[1, 2, 3]` using list comprehension |
|
ref: print([item for item in [1, 2, 3]]) |
|
Output: [(x + y) for x in [1, 2, 3, 4], [4, 5, 6]] |
|
bleu_metric: 27.199778234956106 |
|
---------- |
|
NL: extract all the values with keys 'x' and 'y' from a list of dictionaries `d` to list of tuples |
|
ref: [(x['x'], x['y']) for x in d] |
|
Output: [d for d in a if d['name'] == 'pluto'] |
|
bleu_metric: 13.446276862221726 |
|
---------- |
|
NL: get the filename without the extension from file 'hemanth.txt' |
|
ref: print(os.path.splitext(os.path.basename('hemanth.txt'))[0]) |
|
Output: os.path.splitext(filename, 'r') |
|
bleu_metric: 19.13913717974136 |
|
---------- |
|
NL: create a dictionary by adding each two adjacent elements in tuple `x` as key/value pair to it |
|
ref: dict(x[i:i + 2] for i in range(0, len(x), 2)) |
|
Output: dict(zip(x, y)) |
|
bleu_metric: 6.591862820334322 |
|
---------- |
|
NL: create a list containing flattened list `[['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']]` |
|
ref: values = sum([['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']], []) |
|
Output: [['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'])] |
|
bleu_metric: 22.895991001938675 |
|
---------- |
|
NL: select rows in a dataframe `df` column 'closing_price' between two values 99 and 101 |
|
ref: df = df[(df['closing_price'] >= 99) & (df['closing_price'] <= 101)] |
|
Output: df[df['column_name'].str[1:] |
|
bleu_metric: 9.220008234645237 |
|
---------- |
|
NL: replace all occurences of newlines `\n` with `<br>` in dataframe `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df.replace('\n', '>').replace('\r\n') |
|
bleu_metric: 28.577933090423212 |
|
---------- |
|
NL: replace all occurrences of a string `\n` by string `<br>` in a pandas data frame `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df.replace({'\n': '<br>'}, regex=True) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: create a list containing each two adjacent letters in string `word` as its elements |
|
ref: [(x + y) for x, y in zip(word, word[1:])] |
|
Output: print(list(itertools.chain.from_iterable([''.join([''.join(i)) for i in myList |
|
bleu_metric: 6.9872837779786146 |
|
---------- |
|
NL: get a list of pairs from a string `word` using lambda function |
|
ref: list(map(lambda x, y: x + y, word[:-1], word[1:])) |
|
Output: [item[0] for item in wordids] |
|
bleu_metric: 3.6045344658126863 |
|
---------- |
|
NL: extract a url from a string `mystring` |
|
ref: print(re.findall('(https?://[^\\s]+)', myString)) |
|
Output: print(re.search('(?<=\\S+)', mystring)) |
|
bleu_metric: 29.098751790827798 |
|
---------- |
|
NL: extract a url from a string `mystring` |
|
ref: print(re.search('(?P<url>https?://[^\\s]+)', myString).group('url')) |
|
Output: print(re.search('(?<=\\S+)', mystring)) |
|
bleu_metric: 26.19504694379959 |
|
---------- |
|
NL: remove all special characters, punctuation and spaces from a string `mystring` using regex |
|
ref: re.sub('[^A-Za-z0-9]+', '', mystring) |
|
Output: re.sub('[^\\w' ]", '', mystring) |
|
bleu_metric: 54.67160268053085 |
|
---------- |
|
NL: create a datetimeindex containing 13 periods of the second friday of each month starting from date '2016-01-01' |
|
ref: pd.date_range('2016-01-01', freq='WOM-2FRI', periods=13) |
|
Output: datetime.datetime.strptime('01-01-04', '%d-%b-%Y') |
|
bleu_metric: 15.911783110981517 |
|
---------- |
|
NL: create multidimensional array `matrix` with 3 rows and 2 columns in python |
|
ref: matrix = [[a, b], [c, d], [e, f]] |
|
Output: np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 1 |
|
bleu_metric: 11.802861352393501 |
|
---------- |
|
NL: replace spaces with underscore |
|
ref: mystring.replace(' ', '_') |
|
Output: re.sub('\\([^\\w\\)', '', text) |
|
bleu_metric: 15.604242268653643 |
|
---------- |
|
NL: get an absolute file path of file 'mydir/myfile.txt' |
|
ref: os.path.abspath('mydir/myfile.txt') |
|
Output: os.path.abspath(mypath) |
|
bleu_metric: 36.304072644520666 |
|
---------- |
|
NL: split string `my_string` on white spaces |
|
ref: """ """.join(my_string.split()) |
|
Output: my_string.split('_') |
|
bleu_metric: 19.77851893672361 |
|
---------- |
|
NL: get filename without extension from file `filename` |
|
ref: os.path.splitext(filename)[0] |
|
Output: os.path.splitext('/path/to/filename.txt') |
|
bleu_metric: 33.70129264673147 |
|
---------- |
|
NL: get a list containing the sum of each element `i` in list `l` plus the previous elements |
|
ref: [sum(l[:i]) for i, _ in enumerate(l)] |
|
Output: [sum(x) for x in lst if x > 2] |
|
bleu_metric: 20.61396573920308 |
|
---------- |
|
NL: split a string `docs/src/scripts/temp` by `/` keeping `/` in the result |
|
ref: """Docs/src/Scripts/temp""".replace('/', '/\x00/').split('\x00') |
|
Output: result = subprocess.Popen(sys.+)" -DOL) |
|
bleu_metric: 3.19149448369712 |
|
---------- |
|
NL: shuffle columns of an numpy array 'r' |
|
ref: np.random.shuffle(np.transpose(r)) |
|
Output: np.random.shuffle(np.random.randint(0, 1, axis=1)) |
|
bleu_metric: 41.3948387915005 |
|
---------- |
|
NL: copy all values in a column 'b' to a new column 'd' in a pandas data frame 'df' |
|
ref: df['D'] = df['B'] |
|
Output: df['B'] = df['B'] |
|
bleu_metric: 80.03203203844998 |
|
---------- |
|
NL: find a value within nested json 'data' where the key inside another key 'b' is unknown. |
|
ref: list(data['A']['B'].values())[0]['maindata'][0]['Info'] |
|
Output: data[(key_data['Date']['post code']) & (data['Date'])] |
|
bleu_metric: 21.54701803718216 |
|
---------- |
|
NL: check characters of string `string` are true predication of function `predicate` |
|
ref: all(predicate(x) for x in string) |
|
Output: all(x in string for x in list(string.items()) if x == 'isdit') |
|
bleu_metric: 16.27934873162478 |
|
---------- |
|
NL: determine number of files on a drive with python |
|
ref: os.statvfs('/').f_files - os.statvfs('/').f_ffree |
|
Output: os.stat(path).st_common(f.st_f) |
|
bleu_metric: 10.276795791404941 |
|
---------- |
|
NL: how to get a single result from a sqlite query in python? |
|
ref: cursor.fetchone()[0] |
|
Output: cursor.execute('User')[0] |
|
bleu_metric: 44.08231875586727 |
|
---------- |
|
NL: convert string `user_input` into a list of integers `user_list` |
|
ref: user_list = [int(number) for number in user_input.split(',')] |
|
Output: return int(soup.split(',')) |
|
bleu_metric: 34.34281712615472 |
|
---------- |
|
NL: get a list of integers by splitting a string `user` with comma |
|
ref: [int(s) for s in user.split(',')] |
|
Output: [int(x) for x in [1, 2, 3, 4, 5] |
|
bleu_metric: 21.79301929852717 |
|
---------- |
|
NL: sorting a python list by two criteria |
|
ref: sorted(list, key=lambda x: (x[0], -x[1])) |
|
Output: sorted(list, key=lambda x: (x[1], x[0])) |
|
bleu_metric: 80.44410811781832 |
|
---------- |
|
NL: sort a list of objects `ut`, based on a function `cmpfun` in descending order |
|
ref: ut.sort(key=cmpfun, reverse=True) |
|
Output: sorted(a, key=lambda x: x.count(x.getter(1)) |
|
bleu_metric: 10.813005337959174 |
|
---------- |
|
NL: reverse list `ut` based on the `count` attribute of each object |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: sum(lst) |
|
bleu_metric: 2.867683507302 |
|
---------- |
|
NL: sort a list of objects `ut` in reverse order by their `count` property |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: sorted(L, key=lambda x: (-len(x.split('-))) |
|
bleu_metric: 25.0737833894674 |
|
---------- |
|
NL: click a href button 'send' with selenium |
|
ref: driver.find_element_by_partial_link_text('Send').click() |
|
Output: browser.find_element_by_text('http://www.example.com') |
|
bleu_metric: 14.44788670919441 |
|
---------- |
|
NL: click a href button having text `send inmail` with selenium |
|
ref: driver.findElement(By.linkText('Send InMail')).click() |
|
Output: browser.find_element_by_class_name('http://www.com/') |
|
bleu_metric: 10.573773767686836 |
|
---------- |
|
NL: click a href button with text 'send inmail' with selenium |
|
ref: driver.find_element_by_link_text('Send InMail').click() |
|
Output: browser.find_element_by_class_name('http://www.text.com') |
|
bleu_metric: 14.44788670919441 |
|
---------- |
|
NL: cast an int `i` to a string and concat to string 'me' |
|
ref: 'ME' + str(i) |
|
Output: """""".join(i) |
|
bleu_metric: 31.61487584488943 |
|
---------- |
|
NL: sorting data in dataframe pandas |
|
ref: df.sort_values(['System_num', 'Dis']) |
|
Output: df.sort('m') |
|
bleu_metric: 13.487005099534619 |
|
---------- |
|
NL: prepend the line '#test firstline\n' to the contents of file 'infile' and save as the file 'outfile' |
|
ref: open('outfile', 'w').write('#test firstline\n' + open('infile').read()) |
|
Output: open('filename', 'w').write('\n').read().write('\n').write('\n') |
|
bleu_metric: 45.445331007629186 |
|
---------- |
|
NL: sort a list `l` by length of value in tuple |
|
ref: l.sort(key=lambda t: len(t[1]), reverse=True) |
|
Output: print(sorted(lst, key=lambda tup: len(x), len(y))) |
|
bleu_metric: 17.729842264695016 |
|
---------- |
|
NL: split string `s` by words that ends with 'd' |
|
ref: re.findall('\\b(\\w+)d\\b', s) |
|
Output: [word for word in s.split('.')[0] for s in s.split()] |
|
bleu_metric: 7.987276352377326 |
|
---------- |
|
NL: return `true` if string `foobarrrr` contains regex `ba[rzd]` |
|
ref: bool(re.search('ba[rzd]', 'foobarrrr')) |
|
Output: re.search('(?<=.)(?=(a))', 'aaa bbb ccc ddd e') |
|
bleu_metric: 23.770841795864293 |
|
---------- |
|
NL: removing duplicates in list `t` |
|
ref: list(set(t)) |
|
Output: list(set(item) for item in L)) |
|
bleu_metric: 35.556702356686955 |
|
---------- |
|
NL: removing duplicates in list `source_list` |
|
ref: list(set(source_list)) |
|
Output: list(item) |
|
bleu_metric: 24.795364698947967 |
|
---------- |
|
NL: removing duplicates in list `abracadabra` |
|
ref: list(OrderedDict.fromkeys('abracadabra')) |
|
Output: list(set(t)) |
|
bleu_metric: 19.745471508497758 |
|
---------- |
|
NL: convert array `a` into a list |
|
ref: numpy.array(a).reshape(-1).tolist() |
|
Output: a.append(a) |
|
bleu_metric: 9.852859740626553 |
|
---------- |
|
NL: convert the first row of numpy matrix `a` to a list |
|
ref: numpy.array(a)[0].tolist() |
|
Output: numpy.array(a, a[0]) |
|
bleu_metric: 44.579146390257485 |
|
---------- |
|
NL: in `soup`, get the content of the sibling of the `td` tag with text content `address:` |
|
ref: print(soup.find(text='Address:').findNext('td').contents[0]) |
|
Output: soup.findAll(text='"') |
|
bleu_metric: 12.1241604438414 |
|
---------- |
|
NL: convert elements of each tuple in list `l` into a string separated by character `@` |
|
ref: """ """.join([('%d@%d' % t) for t in l]) |
|
Output: """""".join(map(lambda x: x[1]) |
|
bleu_metric: 37.15744930678825 |
|
---------- |
|
NL: convert each tuple in list `l` to a string with '@' separating the tuples' elements |
|
ref: """ """.join([('%d@%d' % (t[0], t[1])) for t in l]) |
|
Output: [(x + y) for x, y in zip(l1, l2)] |
|
bleu_metric: 4.866055054993489 |
|
---------- |
|
NL: get the html from the current web page of a selenium driver |
|
ref: driver.execute_script('return document.documentElement.outerHTML;') |
|
Output: driver.get('http://www.google.com') |
|
bleu_metric: 19.209534151258666 |
|
---------- |
|
NL: get all matches with regex pattern `\\d+[xx]` in list of string `teststr` |
|
ref: [i for i in teststr if re.search('\\d+[xX]', i)] |
|
Output: [m.start() for m in re.findall('\\d+', 'abcd')] |
|
bleu_metric: 31.35886387911532 |
|
---------- |
|
NL: select values from column 'a' for which corresponding values in column 'b' will be greater than 50, and in column 'c' - equal 900 in dataframe `df` |
|
ref: df['A'][(df['B'] > 50) & (df['C'] == 900)] |
|
Output: df[['A', 'B']].fillna(df['A'] |
|
bleu_metric: 32.2826123723905 |
|
---------- |
|
NL: sort dictionary `o` in ascending order based on its keys and items |
|
ref: sorted(o.items()) |
|
Output: sorted(list(d.items()), key=lambda v: v[1]) |
|
bleu_metric: 24.42195895839763 |
|
---------- |
|
NL: get sorted list of keys of dict `d` |
|
ref: sorted(d) |
|
Output: sorted(d, key=d.get) |
|
bleu_metric: 25.21193618434983 |
|
---------- |
|
NL: how to sort dictionaries by keys in python |
|
ref: sorted(d.items()) |
|
Output: sorted(d.items()), key=lambda x: (x['name'], x['name'], x['name'])) |
|
bleu_metric: 21.62882016096312 |
|
---------- |
|
NL: convert string "1" into integer |
|
ref: int('1') |
|
Output: int('1', 2) |
|
bleu_metric: 58.143073696821936 |
|
---------- |
|
NL: function to convert strings into integers |
|
ref: int() |
|
Output: int(''.join(map(str, x))) |
|
bleu_metric: 12.729922658368398 |
|
---------- |
|
NL: convert items in `t1` to integers |
|
ref: T2 = [map(int, x) for x in T1] |
|
Output: int('1') |
|
bleu_metric: 7.448668213629092 |
|
---------- |
|
NL: call a shell script `./test.sh` using subprocess |
|
ref: subprocess.call(['./test.sh']) |
|
Output: subprocess.call('test.sh otherfunc') |
|
bleu_metric: 34.64490516910983 |
|
---------- |
|
NL: call a shell script `notepad` using subprocess |
|
ref: subprocess.call(['notepad']) |
|
Output: subprocess.call(['notepad']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: combine lists `l1` and `l2` by alternating their elements |
|
ref: [val for pair in zip(l1, l2) for val in pair] |
|
Output: [(x + y) for x, y in zip(l1, l2)] |
|
bleu_metric: 40.59264050928986 |
|
---------- |
|
NL: encode string 'data to be encoded' |
|
ref: encoded = base64.b64encode('data to be encoded') |
|
Output: data = json.encode('utf-8') |
|
bleu_metric: 21.665290989148364 |
|
---------- |
|
NL: encode a string `data to be encoded` to `ascii` encoding |
|
ref: encoded = 'data to be encoded'.encode('ascii') |
|
Output: data = 'data2' |
|
bleu_metric: 6.5298221612721505 |
|
---------- |
|
NL: parse tab-delimited csv file 'text.txt' into a list |
|
ref: lol = list(csv.reader(open('text.txt', 'rb'), delimiter='\t')) |
|
Output: open('demo.txt', 'r').read() |
|
bleu_metric: 18.96773811885661 |
|
---------- |
|
NL: get attribute `my_str` of object `my_object` |
|
ref: getattr(my_object, my_str) |
|
Output: my_obj.__dict__ |
|
bleu_metric: 11.909345107359583 |
|
---------- |
|
NL: group a list of dicts `ld` into one dict by key |
|
ref: print(dict(zip(LD[0], zip(*[list(d.values()) for d in LD])))) |
|
Output: dict((k, v) for k, v in list(d.items()) for k, v in list(d.items())} |
|
bleu_metric: 21.161547096559342 |
|
---------- |
|
NL: how do i sum the first value in each tuple in a list of tuples in python? |
|
ref: sum([pair[0] for pair in list_of_pairs]) |
|
Output: sum(item[0] for item in mylist) |
|
bleu_metric: 32.21542689451684 |
|
---------- |
|
NL: convert unicode string u"{'code1':1,'code2':1}" into dictionary |
|
ref: d = ast.literal_eval("{'code1':1,'code2':1}") |
|
Output: {'MyString1': '1', '1'}).encode('ascii', 'ignore') |
|
bleu_metric: 14.294565332608489 |
|
---------- |
|
NL: find all words in a string `mystring` that start with the `$` sign |
|
ref: [word for word in mystring.split() if word.startswith('$')] |
|
Output: re.findall('\\[^\\w\\w', mystring) |
|
bleu_metric: 9.573479881751316 |
|
---------- |
|
NL: remove any url within string `text` |
|
ref: text = re.sub('^https?:\\/\\/.*[\\r\\n]*', '', text, flags=re.MULTILINE) |
|
Output: text = re.sub('\\r\\r\\r\\n*\\Z', '', text) |
|
bleu_metric: 39.07206775645457 |
|
---------- |
|
NL: replace all elements in array `a` that are not present in array `[1, 3, 4]` with zeros |
|
ref: np.where(np.in1d(A, [1, 3, 4]).reshape(A.shape), A, 0) |
|
Output: np.isnan(a).any(np.in1d(a), 0, a) |
|
bleu_metric: 20.39361671090609 |
|
---------- |
|
NL: calculate mean across dimension in a 2d array `a` |
|
ref: np.mean(a, axis=1) |
|
Output: np.mean(a, axis=1) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: running r script '/pathto/myrscript.r' from python |
|
ref: subprocess.call(['/usr/bin/Rscript', '--vanilla', '/pathto/MyrScript.r']) |
|
Output: sys.exit(app.exec_()) |
|
bleu_metric: 2.642308696142247 |
|
---------- |
|
NL: run r script '/usr/bin/rscript --vanilla /pathto/myrscript.r' |
|
ref: subprocess.call('/usr/bin/Rscript --vanilla /pathto/MyrScript.r', shell=True) |
|
Output: subprocess.call('/usr/bin/perl', shell=True) |
|
bleu_metric: 48.72501457287311 |
|
---------- |
|
NL: add a header to a csv file |
|
ref: writer.writeheader() |
|
Output: writer.writeheader() |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: replacing nan in the dataframe `df` with row average |
|
ref: df.fillna(df.mean(axis=1), axis=1) |
|
Output: df.fillna(df.mean(axis=1), axis=0) |
|
bleu_metric: 86.6397551781362 |
|
---------- |
|
NL: convert unix timestamp '1347517370' to formatted string '%y-%m-%d %h:%m:%s' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(1347517370)) |
|
Output: datetime.strptime('21/11/13 19:19:30 -0400', '%Y/%m/%d |
|
bleu_metric: 12.446578619659645 |
|
---------- |
|
NL: call a base class's class method `do` from derived class `derived` |
|
ref: super(Derived, cls).do(a) |
|
Output: super(MyClass, self).__init__(*args, **kwargs) |
|
bleu_metric: 14.02577516008147 |
|
---------- |
|
NL: selecting rows in numpy ndarray 'a', where the value in the first column is 0 and value in the second column is 1 |
|
ref: a[np.where((a[:, (0)] == 0) * (a[:, (1)] == 1))] |
|
Output: a[np.arange(a[0])!= 0] |
|
bleu_metric: 10.315793886636692 |
|
---------- |
|
NL: separate words delimited by one or more spaces into a list |
|
ref: re.split(' +', 'hello world sample text') |
|
Output: [word for word in my_list if any(x) not in '\n' % x.split()] |
|
bleu_metric: 10.332090908268508 |
|
---------- |
|
NL: length of longest element in list `words` |
|
ref: len(max(words, key=len)) |
|
Output: len(words, key=lambda i: len(word) for word in word_list) |
|
bleu_metric: 30.51327880362441 |
|
---------- |
|
NL: get the value associated with unicode key 'from_user' of first dictionary in list `result` |
|
ref: result[0]['from_user'] |
|
Output: [x for x in list_of_dict if x['success'] not in data] |
|
bleu_metric: 12.879862858915844 |
|
---------- |
|
NL: retrieve each line from a file 'file.txt' as a list |
|
ref: [line.split() for line in open('File.txt')] |
|
Output: line = [line.strip() for line in open('filename.txt')] |
|
bleu_metric: 63.83964846132485 |
|
---------- |
|
NL: swap keys with values in a dictionary `a` |
|
ref: res = dict((v, k) for k, v in a.items()) |
|
Output: dict((v, k) for k, v in a.items()) |
|
bleu_metric: 90.00876262522594 |
|
---------- |
|
NL: open a file `path/to/file_name.ext` in write mode |
|
ref: new_file = open('path/to/FILE_NAME.ext', 'w') |
|
Output: shutil.copyfile('/to/file.txt', 'path') |
|
bleu_metric: 25.66441742647156 |
|
---------- |
|
NL: how to count distinct values in a column of a pandas group by object? |
|
ref: df.groupby(['col1', 'col2'])['col3'].nunique().reset_index() |
|
Output: df.groupby('A').agg(lambda x: x.nlargest(x.name).nunique()) |
|
bleu_metric: 24.81076483975817 |
|
---------- |
|
NL: check if any key in the dictionary `dict1` starts with the string `emp$$` |
|
ref: any(key.startswith('EMP$$') for key in dict1) |
|
Output: any(dict.values()) |
|
bleu_metric: 9.663861439684919 |
|
---------- |
|
NL: create list of values from dictionary `dict1` that have a key that starts with 'emp$$' |
|
ref: [value for key, value in list(dict1.items()) if key.startswith('EMP$$')] |
|
Output: [key for key, value in list(d.items()) if 'new y' in d] |
|
bleu_metric: 43.11804919179004 |
|
---------- |
|
NL: convert a pandas series `sf` into a pandas dataframe `df` with columns `email` and `list` |
|
ref: pd.DataFrame({'email': sf.index, 'list': sf.values}) |
|
Output: pd.concat([df1, df2], axis=1) |
|
bleu_metric: 8.12657367724027 |
|
---------- |
|
NL: print elements of list `list` seperated by tabs `\t` |
|
ref: print('\t'.join(map(str, list))) |
|
Output: print(' '.join(map(list, list))) |
|
bleu_metric: 62.705622531832795 |
|
---------- |
|
NL: print unicode string '\xd0\xbf\xd1\x80\xd0\xb8' with utf-8 |
|
ref: print('\xd0\xbf\xd1\x80\xd0\xb8'.encode('raw_unicode_escape')) |
|
Output: print('\xd0\xd0\xd1\xd0\xd0\xd0\xd0\xd0\xd0\ |
|
bleu_metric: 32.278364081487986 |
|
---------- |
|
NL: encode a latin character in string `sopet\xc3\xb3n` properly |
|
ref: 'Sopet\xc3\xb3n'.encode('latin-1').decode('utf-8') |
|
Output: print('\xc3\xa9'.encode('utf-8')) |
|
bleu_metric: 40.96260380345688 |
|
---------- |
|
NL: resized image `image` to width, height of `(x, y)` with filter of `antialias` |
|
ref: image = image.resize((x, y), Image.ANTIALIAS) |
|
Output: im = Image.imshow(image, 0, cv2.COLOR_rGR2RGB) |
|
bleu_metric: 14.564246815114087 |
|
---------- |
|
NL: regex, find "n"s only in the middle of string `s` |
|
ref: re.findall('n(?<=[^n]n)n+(?=[^n])(?i)', s) |
|
Output: re.sub('(?<=n)', '', s) |
|
bleu_metric: 19.97638457636558 |
|
---------- |
|
NL: display the float `1/3*100` as a percentage |
|
ref: print('{0:.0f}%'.format(1.0 / 3 * 100)) |
|
Output: int(round(1.5)) |
|
bleu_metric: 8.651705771167139 |
|
---------- |
|
NL: sort a list of dictionary `mylist` by the key `title` |
|
ref: mylist.sort(key=lambda x: x['title']) |
|
Output: mylist.sort(key=lambda x: x['title']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: sort a list `l` of dicts by dict value 'title' |
|
ref: l.sort(key=lambda x: x['title']) |
|
Output: l.sort(key=lambda x: x['title']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: sort a list of dictionaries by the value of keys 'title', 'title_url', 'id' in ascending order. |
|
ref: l.sort(key=lambda x: (x['title'], x['title_url'], x['id'])) |
|
Output: my_list.sort(key=lambda x: x['title']) |
|
bleu_metric: 30.53233854712605 |
|
---------- |
|
NL: find 10 largest differences between each respective elements of list `l1` and list `l2` |
|
ref: heapq.nlargest(10, range(len(l1)), key=lambda i: abs(l1[i] - l2[i])) |
|
Output: print(max(x, key=sum)) |
|
bleu_metric: 5.1753387054451085 |
|
---------- |
|
NL: beautifulsoup find all 'span' elements in html string `soup` with class of 'stargryb sp' |
|
ref: soup.find_all('span', {'class': 'starGryB sp'}) |
|
Output: soup.findAll('div', attrs={'name': 'description'}) |
|
bleu_metric: 27.858167198909346 |
|
---------- |
|
NL: write records in dataframe `df` to table 'test' in schema 'a_schema' |
|
ref: df.to_sql('test', engine, schema='a_schema') |
|
Output: df.to_csv('test.csv', index=False) |
|
bleu_metric: 20.519505687240557 |
|
---------- |
|
NL: extract brackets from string `s` |
|
ref: brackets = re.sub('[^(){}[\\]]', '', s) |
|
Output: re.findall('\\[\\]]', s) |
|
bleu_metric: 36.918962549447706 |
|
---------- |
|
NL: remove duplicate elements from list 'l' |
|
ref: list(dict((x[0], x) for x in L).values()) |
|
Output: [set(l) for l in set(lst) for l in L)] |
|
bleu_metric: 13.839002470625022 |
|
---------- |
|
NL: read a file `file` without newlines |
|
ref: [line.rstrip('\n') for line in file] |
|
Output: f.close() |
|
bleu_metric: 4.4408502586392995 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 9.025970847670083 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 9.025970847670083 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in [i for (i, x) in enumerate(testlist) if (x == 1)]: |
|
pass |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 7.3690983226275435 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in (i for (i, x) in enumerate(testlist) if (x == 1)): |
|
pass |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 8.372912227572577 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: gen = (i for (i, x) in enumerate(testlist) if (x == 1)) |
|
for i in gen: |
|
pass |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 7.018371226772391 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: print(testlist.index(element)) |
|
Output: print(testlist.index(x)) |
|
bleu_metric: 70.16879391277371 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: try: |
|
print(testlist.index(element)) |
|
except ValueError: |
|
pass |
|
Output: print(testlist.index(x)) |
|
bleu_metric: 34.660486300017936 |
|
---------- |
|
NL: find the first element of the tuple with the maximum second element in a list of tuples `lis` |
|
ref: max(lis, key=lambda item: item[1])[0] |
|
Output: max(x[1] for x in L[0]) |
|
bleu_metric: 22.078697088920286 |
|
---------- |
|
NL: get the item at index 0 from the tuple that has maximum value at index 1 in list `lis` |
|
ref: max(lis, key=itemgetter(1))[0] |
|
Output: max(a, key=lambda x: x[1]) |
|
bleu_metric: 21.186050864016664 |
|
---------- |
|
NL: make a delay of 1 second |
|
ref: time.sleep(1) |
|
Output: time.sleep(1) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert list of tuples `l` to a string |
|
ref: """, """.join('(' + ', '.join(i) + ')' for i in L) |
|
Output: """""".join(map(str, L)) |
|
bleu_metric: 22.382912241881993 |
|
---------- |
|
NL: django set default value of field `b` equal to '0000000' |
|
ref: b = models.CharField(max_length=7, default='0000000', editable=False) |
|
Output: super(Model, self).save(*args, **kwargs) |
|
bleu_metric: 8.756189878973519 |
|
---------- |
|
NL: sort lis `list5` in ascending order based on the degrees value of its elements |
|
ref: sorted(list5, lambda x: (degree(x), x)) |
|
Output: sorted(list(range(len(a))), key=lambda x: (-len(x)), x[1]) |
|
bleu_metric: 21.534597645653108 |
|
---------- |
|
NL: how do i perform secondary sorting in python? |
|
ref: sorted(list5, key=lambda vertex: (degree(vertex), vertex)) |
|
Output: sorted(list1, key=lambda x: x[:-1]) |
|
bleu_metric: 23.523340210589698 |
|
---------- |
|
NL: convert a list into a generator object |
|
ref: (n for n in [1, 2, 3, 5]) |
|
Output: [(i * i for i in range(10)) for i in range(10)] |
|
bleu_metric: 7.707532488755381 |
|
---------- |
|
NL: remove elements from list `oldlist` that have an index number mentioned in list `removelist` |
|
ref: newlist = [v for i, v in enumerate(oldlist) if i not in removelist] |
|
Output: [item for item in my_list if some_condition()] |
|
bleu_metric: 9.65619264674583 |
|
---------- |
|
NL: open a file `yourfile.txt` in write mode |
|
ref: f = open('yourfile.txt', 'w') |
|
Output: f = open('file.txt', 'r') |
|
bleu_metric: 61.28081331864039 |
|
---------- |
|
NL: get attribute 'attr' from object `obj` |
|
ref: getattr(obj, 'attr') |
|
Output: getattr(obj, 'attr') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to tuple |
|
ref: from functools import reduce |
|
reduce(lambda a, b: a + b, (('aa',), ('bb',), ('cc',))) |
|
Output: tuple(map(tuple, map(int, t)) |
|
bleu_metric: 3.3785986651715976 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to list in one line |
|
ref: map(lambda a: a[0], (('aa',), ('bb',), ('cc',))) |
|
Output: [('a', 'b', 'c'), ('d', 'e', 'e']) for e in l] |
|
bleu_metric: 15.687545978719285 |
|
---------- |
|
NL: python pandas: how to replace a characters in a column of a dataframe? |
|
ref: df['range'].replace(',', '-', inplace=True) |
|
Output: df['AB'].replace(',',', '-', inplace=True) |
|
bleu_metric: 80.377750806414 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.24532394983186231 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.24532394983186231 |
|
---------- |
|
NL: unzip list `original` |
|
ref: result = ([a for (a, b) in original], [b for (a, b) in original]) |
|
Output: zip(*main_list) |
|
bleu_metric: 0.7985269443272172 |
|
---------- |
|
NL: unzip list `original` and return a generator |
|
ref: result = ((a for (a, b) in original), (b for (a, b) in original)) |
|
Output: [(i, j) for i in range(10)] |
|
bleu_metric: 5.292278815391249 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.07639466888110501 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` and fill empty results with none |
|
ref: map(None, *[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.037243160645090284 |
|
---------- |
|
NL: encode `decimal('3.9')` to a json string |
|
ref: json.dumps(Decimal('3.9')) |
|
Output: json.dumps(ord('x1b2\x92\x03\x9\xa2\x8') |
|
bleu_metric: 22.115966812339867 |
|
---------- |
|
NL: add key "mynewkey" to dictionary `d` with value "mynewvalue" |
|
ref: d['mynewkey'] = 'mynewvalue' |
|
Output: d['Test'].update({'item': 1, 'item': 4}, {'item3': 1}) |
|
bleu_metric: 9.25329498915617 |
|
---------- |
|
NL: add key 'a' to dictionary `data` with value 1 |
|
ref: data.update({'a': 1, }) |
|
Output: data['a'] = 'b' |
|
bleu_metric: 17.86189637183548 |
|
---------- |
|
NL: add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(dict(a=1)) |
|
Output: data['a'] = 'b' |
|
bleu_metric: 13.078474031415348 |
|
---------- |
|
NL: add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(a=1) |
|
Output: data['a'] = 'b' |
|
bleu_metric: 14.323145079400494 |
|
---------- |
|
NL: find maximal value in matrix `matrix` |
|
ref: max([max(i) for i in matrix]) |
|
Output: max(max(x, key=lambda x: x[1])[0] |
|
bleu_metric: 12.58220555845937 |
|
---------- |
|
NL: round number `answer` to 2 precision after the decimal point |
|
ref: answer = str(round(answer, 2)) |
|
Output: round(1.005, 2) |
|
bleu_metric: 24.5981275183433 |
|
---------- |
|
NL: extract ip address from an html string |
|
ref: ip = re.findall('[0-9]+(?:\\.[0-9]+){3}', s) |
|
Output: print(re.findall('\\d+(?=(\\.com+)\\.com/', s)) |
|
bleu_metric: 29.033332017734637 |
|
---------- |
|
NL: filter dataframe `df` by values in column `a` that appear more than once |
|
ref: df.groupby('A').filter(lambda x: len(x) > 1) |
|
Output: df[df['A'] > 1] |
|
bleu_metric: 10.739983258001304 |
|
---------- |
|
NL: append each line in file `myfile` into a list |
|
ref: [x for x in myfile.splitlines() if x != ''] |
|
Output: myfile.write('myfile.txt', 'w').write('\n') |
|
bleu_metric: 8.899891914341412 |
|
---------- |
|
NL: get a list of integers `lst` from a file `filename.txt` |
|
ref: lst = map(int, open('filename.txt').readlines()) |
|
Output: [int(i) for i in f.split(',')] |
|
bleu_metric: 12.313871716496207 |
|
---------- |
|
NL: add color bar with image `mappable` to plot `plt` |
|
ref: plt.colorbar(mappable=mappable, cax=ax3) |
|
Output: plt.savefig('test.png') |
|
bleu_metric: 16.449450056138957 |
|
---------- |
|
NL: count most frequent 100 words in column 'text' of dataframe `df` |
|
ref: Counter(' '.join(df['text']).split()).most_common(100) |
|
Output: df.join(word).most_common(word) |
|
bleu_metric: 14.732626148274333 |
|
---------- |
|
NL: python split a string using regex |
|
ref: re.findall('(.+?):(.+?)\\b ?', text) |
|
Output: re.split('(?<=\\.\\d+|\\s)', text) |
|
bleu_metric: 27.16899549919204 |
|
---------- |
|
NL: generate all 2-element subsets of tuple `(1, 2, 3)` |
|
ref: list(itertools.combinations((1, 2, 3), 2)) |
|
Output: [list(itertools.product([1, 2, 3, 4], [4, 5, 6])) for a in range( |
|
bleu_metric: 23.605722704787006 |
|
---------- |
|
NL: get a value of datetime.today() in the utc time zone |
|
ref: datetime.now(pytz.utc) |
|
Output: datetime.datetime.now().utcnow() |
|
bleu_metric: 34.38931217657843 |
|
---------- |
|
NL: get a new list `list2`by removing empty list from a list of lists `list1` |
|
ref: list2 = [x for x in list1 if x != []] |
|
Output: list2 = [x for x in list1 if x!= []] |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: create `list2` to contain the lists from list `list1` excluding the empty lists from `list1` |
|
ref: list2 = [x for x in list1 if x] |
|
Output: list23 = [(a - b) for a, b in zip(list1, list2)] |
|
bleu_metric: 11.13613656101029 |
|
---------- |
|
NL: django response with json `data` |
|
ref: return HttpResponse(data, mimetype='application/json') |
|
Output: json.dumps(data, ensure_ascii=False) |
|
bleu_metric: 18.83283134652959 |
|
---------- |
|
NL: get all text that is not enclosed within square brackets in string `example_str` |
|
ref: re.findall('(.*?)\\[.*?\\]', example_str) |
|
Output: """\\[\\]]""".split() |
|
bleu_metric: 16.91906599442455 |
|
---------- |
|
NL: use a regex to get all text in a string `example_str` that is not surrounded by square brackets |
|
ref: re.findall('(.*?)(?:\\[.*?\\]|$)', example_str) |
|
Output: re.findall('\\[(.*?\\]\\]', '', str)) |
|
bleu_metric: 41.184938137508176 |
|
---------- |
|
NL: get whatever is between parentheses as a single match, and any char outside as an individual match in string '(zyx)bc' |
|
ref: re.findall('\\(.+?\\)|\\w', '(zyx)bc') |
|
Output: re.findall('\\w+(?:\\w+)', '\\1', s) |
|
bleu_metric: 38.05918723545142 |
|
---------- |
|
NL: match regex '\\((.*?)\\)|(\\w)' with string '(zyx)bc' |
|
ref: re.findall('\\((.*?)\\)|(\\w)', '(zyx)bc') |
|
Output: re.match('(?<=\\w+)', 'a\n b\n c') |
|
bleu_metric: 21.2203664532429 |
|
---------- |
|
NL: match multiple regex patterns with the alternation operator `|` in a string `(zyx)bc` |
|
ref: re.findall('\\(.*?\\)|\\w', '(zyx)bc') |
|
Output: re.findall('(?<=\\w)\\w', 'abcdefg123 and again abc') |
|
bleu_metric: 40.304968802021214 |
|
---------- |
|
NL: formate each string cin list `elements` into pattern '%{0}%' |
|
ref: elements = ['%{0}%'.format(element) for element in elements] |
|
Output: print(' '.join(map(str, list))) |
|
bleu_metric: 9.154148084605266 |
|
---------- |
|
NL: open a background process 'background-process' with arguments 'arguments' |
|
ref: subprocess.Popen(['background-process', 'arguments']) |
|
Output: subprocess.Popen(['file', '-r', '-r', 'r', 'file']) |
|
bleu_metric: 31.65014630070639 |
|
---------- |
|
NL: get list of values from dictionary 'mydict' w.r.t. list of keys 'mykeys' |
|
ref: [mydict[x] for x in mykeys] |
|
Output: [k for d in mylist if'mykey' in d] |
|
bleu_metric: 14.807582680058125 |
|
---------- |
|
NL: convert list `[('name', 'joe'), ('age', 22)]` into a dictionary |
|
ref: dict([('Name', 'Joe'), ('Age', 22)]) |
|
Output: dict((name, eval(name)) for name in ['name','sp', 'name']) |
|
bleu_metric: 16.475516456048457 |
|
---------- |
|
NL: average each two columns of array `data` |
|
ref: data.reshape(-1, j).mean(axis=1).reshape(data.shape[0], -1) |
|
Output: data.sum(axis=1).sum(axis=1) |
|
bleu_metric: 19.628836362845185 |
|
---------- |
|
NL: double backslash escape all double quotes in string `s` |
|
ref: print(s.encode('unicode-escape').replace('"', '\\"')) |
|
Output: result = result.replace('\\', '') |
|
bleu_metric: 23.514174149586935 |
|
---------- |
|
NL: split a string into a list of words and whitespace |
|
ref: re.split('(\\W+)', s) |
|
Output: [word for word in mystring.split()] |
|
bleu_metric: 15.620412264187214 |
|
---------- |
|
NL: plotting stacked barplots on a panda data frame |
|
ref: df.plot(kind='barh', stacked=True) |
|
Output: df.plot(kind='bar', stacked=True) |
|
bleu_metric: 81.53551038173114 |
|
---------- |
|
NL: reverse the keys and values in a dictionary `mydictionary` |
|
ref: {i[1]: i[0] for i in list(myDictionary.items())} |
|
Output: dict((v, k) for k, v in d.items() if k!= 'None') |
|
bleu_metric: 15.450079547146164 |
|
---------- |
|
NL: finding the index of elements containing substring 'how' and 'what' in a list of strings 'mylist'. |
|
ref: [i for i, j in enumerate(myList) if 'how' in j.lower() or 'what' in j.lower()] |
|
Output: [x for x in mylist if 'abc' in x.startswith('start')] |
|
bleu_metric: 9.601670492244972 |
|
---------- |
|
NL: check if object `obj` is a string |
|
ref: isinstance(obj, str) |
|
Output: isinstance(obj, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(a, str) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: (type(o) is str) |
|
Output: isinstance(a, str) |
|
bleu_metric: 23.813694985189848 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(a, str) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: check if `obj_to_test` is a string |
|
ref: isinstance(obj_to_test, str) |
|
Output: if (not some_string): |
|
pass |
|
bleu_metric: 20.556680845025983 |
|
---------- |
|
NL: append list `list1` to `list2` |
|
ref: list2.extend(list1) |
|
Output: list2.append(list2) |
|
bleu_metric: 32.17294420803808 |
|
---------- |
|
NL: append list `mylog` to `list1` |
|
ref: list1.extend(mylog) |
|
Output: mylist.append('myD') |
|
bleu_metric: 18.850319022747346 |
|
---------- |
|
NL: append list `a` to `c` |
|
ref: c.extend(a) |
|
Output: a.append(b) |
|
bleu_metric: 29.071536848410968 |
|
---------- |
|
NL: append items in list `mylog` to `list1` |
|
ref: for line in mylog: |
|
list1.append(line) |
|
Output: mylist.append('myD') |
|
bleu_metric: 22.84389301518129 |
|
---------- |
|
NL: append a tuple of elements from list `a` with indexes '[0][0] [0][2]' to list `b` |
|
ref: b.append((a[0][0], a[0][2])) |
|
Output: [(a, b, c) for a, b in zip(a, b)] |
|
bleu_metric: 9.850589025894903 |
|
---------- |
|
NL: initialize `secret_key` in flask config with `your_secret_string ` |
|
ref: app.config['SECRET_KEY'] = 'Your_secret_string' |
|
Output: app.run() |
|
bleu_metric: 9.728049676725325 |
|
---------- |
|
NL: unpack a series of tuples in pandas into a dataframe with column names 'out-1' and 'out-2' |
|
ref: pd.DataFrame(out.tolist(), columns=['out-1', 'out-2'], index=out.index) |
|
Output: pd.DataFrame(df.columns, index=['A', 'B']) |
|
bleu_metric: 23.203863908318283 |
|
---------- |
|
NL: find the index of an element 'msft' in a list `stocks_list` |
|
ref: [x for x in range(len(stocks_list)) if stocks_list[x] == 'MSFT'] |
|
Output: zip(*sorted(enumerate(a), key=lambda x: x[1]) |
|
bleu_metric: 7.353922010374821 |
|
---------- |
|
NL: rotate the xtick labels of matplotlib plot `ax` by `45` degrees to make long labels readable |
|
ref: ax.set_xticklabels(labels, rotation=45) |
|
Output: ax.set_xlabel('Temperature (\u2103)') |
|
bleu_metric: 16.54461999338998 |
|
---------- |
|
NL: remove symbols from a string `s` |
|
ref: re.sub('[^\\w]', ' ', s) |
|
Output: re.sub('[^\\w]', '', s) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get the current directory of a script |
|
ref: os.path.basename(os.path.dirname(os.path.realpath(__file__))) |
|
Output: os.path.dirname(os.path.abspath(__file__)) |
|
bleu_metric: 52.085526428001614 |
|
---------- |
|
NL: find octal characters matches from a string `str` using regex |
|
ref: print(re.findall("'\\\\[0-7]{1,3}'", str)) |
|
Output: re.findall('[^\\w-\\d]', str) |
|
bleu_metric: 27.1936649292955 |
|
---------- |
|
NL: split string `input` based on occurrences of regex pattern '[ ](?=[a-z]+\\b)' |
|
ref: re.split('[ ](?=[A-Z]+\\b)', input) |
|
Output: re.split('[a-zA-Z]', '<g+') |
|
bleu_metric: 36.00172012681823 |
|
---------- |
|
NL: split string `input` at every space followed by an upper-case letter |
|
ref: re.split('[ ](?=[A-Z])', input) |
|
Output: re.split('\\g+', s) |
|
bleu_metric: 24.270940595211844 |
|
---------- |
|
NL: send multipart encoded file `files` to url `url` with headers `headers` and metadata `data` |
|
ref: r = requests.post(url, files=files, headers=headers, data=data) |
|
Output: urllib.request.urlretrieve('http://www.com/go/') |
|
bleu_metric: 8.688932567491825 |
|
---------- |
|
NL: write bytes `bytes_` to a file `filename` in python 3 |
|
ref: open('filename', 'wb').write(bytes_) |
|
Output: f.write(open('filename.txt', 'wb') |
|
bleu_metric: 55.95642461260143 |
|
---------- |
|
NL: get a list from a list `lst` with values mapped into a dictionary `dct` |
|
ref: [dct[k] for k in lst] |
|
Output: print([y for x in lst if 'id' in l]) |
|
bleu_metric: 11.75029694362029 |
|
---------- |
|
NL: find duplicate names in column 'name' of the dataframe `x` |
|
ref: x.set_index('name').index.get_duplicates() |
|
Output: df.groupby('name')['name'].index |
|
bleu_metric: 34.899812526885086 |
|
---------- |
|
NL: truncate float 1.923328437452 to 3 decimal places |
|
ref: round(1.923328437452, 3) |
|
Output: '{0:.2f}'.format(13.95) |
|
bleu_metric: 10.802314890908066 |
|
---------- |
|
NL: sort list `li` in descending order based on the date value in second element of each list in list `li` |
|
ref: sorted(li, key=lambda x: datetime.strptime(x[1], '%d/%m/%Y'), reverse=True) |
|
Output: sorted(li, key=lambda x: order.index(x[2], x[2]]) |
|
bleu_metric: 30.17923315990544 |
|
---------- |
|
NL: place the radial ticks in plot `ax` at 135 degrees |
|
ref: ax.set_rlabel_position(135) |
|
Output: ax.set_xlabel('30') |
|
bleu_metric: 24.446151121745054 |
|
---------- |
|
NL: check if path `my_path` is an absolute path |
|
ref: os.path.isabs(my_path) |
|
Output: os.path.exists(my_path) |
|
bleu_metric: 65.80370064762462 |
|
---------- |
|
NL: get number of keys in dictionary `yourdict` |
|
ref: len(list(yourdict.keys())) |
|
Output: len(dict_dict[key] for key in dict_dict) |
|
bleu_metric: 17.194656088289214 |
|
---------- |
|
NL: count the number of keys in dictionary `yourdictfile` |
|
ref: len(set(open(yourdictfile).read().split())) |
|
Output: sum(1 for d in my_list if d.get('key', 1)]) |
|
bleu_metric: 9.449865252803164 |
|
---------- |
|
NL: pandas dataframe get first row of each group by 'id' |
|
ref: df.groupby('id').first() |
|
Output: df.groupby('id').first() |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: split a list in first column into multiple columns keeping other columns as well in pandas data frame |
|
ref: pd.concat([df[0].apply(pd.Series), df[1]], axis=1) |
|
Output: df.apply(lambda x: df.split(',')[1:-1]) |
|
bleu_metric: 13.32809869264623 |
|
---------- |
|
NL: extract attributes 'src="js/([^"]*\\bjquery\\b[^"]*)"' from string `data` |
|
ref: re.findall('src="js/([^"]*\\bjquery\\b[^"]*)"', data) |
|
Output: re.findall('[a-zA-Z][\\w-]*\\.\\S*\\S*[^a- |
|
bleu_metric: 22.84852347284557 |
|
---------- |
|
NL: sum integers contained in strings in list `['', '3.4', '', '', '1.0']` |
|
ref: sum(int(float(item)) for item in [_f for _f in ['', '3.4', '', '', '1.0'] if _f]) |
|
Output: sum(map(int, ['1', '3', '2', '3']) |
|
bleu_metric: 15.327565138128369 |
|
---------- |
|
NL: call a subprocess with arguments `c:\\program files\\vmware\\vmware server\\vmware-cmd.bat` that may contain spaces |
|
ref: subprocess.Popen(['c:\\Program Files\\VMware\\VMware Server\\vmware-cmd.bat']) |
|
Output: subprocess.call('start /im | md5sum', shell=True) |
|
bleu_metric: 6.258382435886439 |
|
---------- |
|
NL: reverse a priority queue `q` in python without using classes |
|
ref: q.put((-n, n)) |
|
Output: (::2 > 0).objects.filter(id=123)) |
|
bleu_metric: 13.78592993183041 |
|
---------- |
|
NL: make a barplot of data in column `group` of dataframe `df` colour-coded according to list `color` |
|
ref: df['group'].plot(kind='bar', color=['r', 'g', 'b', 'r', 'g', 'b', 'r']) |
|
Output: df.plot(x, y, 'B') |
|
bleu_metric: 1.7617020801492098 |
|
---------- |
|
NL: find all matches of regex pattern '([a-fa-f\\d]{32})' in string `data` |
|
ref: re.findall('([a-fA-F\\d]{32})', data) |
|
Output: print(re.findall('(?=(a.*?)\\b', '\\1', data)) |
|
bleu_metric: 29.06614574259767 |
|
---------- |
|
NL: get the length of list `my_list` |
|
ref: len(my_list) |
|
Output: len(my_list) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: getting the length of array `l` |
|
ref: len(l) |
|
Output: len(l) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: getting the length of array `s` |
|
ref: len(s) |
|
Output: len(s) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: getting the length of `my_tuple` |
|
ref: len(my_tuple) |
|
Output: len(my_list) |
|
bleu_metric: 45.180100180492246 |
|
---------- |
|
NL: getting the length of `my_string` |
|
ref: len(my_string) |
|
Output: len(my_string) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: remove escape character from string "\\a" |
|
ref: """\\a""".decode('string_escape') |
|
Output: print(' '.join(a) |
|
bleu_metric: 14.244775721428216 |
|
---------- |
|
NL: replace each 'a' with 'b' and each 'b' with 'a' in the string 'obama' in a single pass. |
|
ref: """obama""".replace('a', '%temp%').replace('b', 'a').replace('%temp%', 'b') |
|
Output: """a b""".replace('b', 'a', 'baz')) |
|
bleu_metric: 34.4125014551951 |
|
---------- |
|
NL: remove directory tree '/folder_name' |
|
ref: shutil.rmtree('/folder_name') |
|
Output: os.makedirs(path) |
|
bleu_metric: 18.094495256969623 |
|
---------- |
|
NL: create a new column `weekday` in pandas data frame `data` based on the values in column `my_dt` |
|
ref: data['weekday'] = data['my_dt'].apply(lambda x: x.weekday()) |
|
Output: data['hour'] = df['Date'].apply(lambda x: x.year)) |
|
bleu_metric: 54.038193355462695 |
|
---------- |
|
NL: reverse sort counter `x` by values |
|
ref: sorted(x, key=x.get, reverse=True) |
|
Output: sorted(x.sort(x.c)) |
|
bleu_metric: 20.35024093540328 |
|
---------- |
|
NL: reverse sort counter `x` by value |
|
ref: sorted(list(x.items()), key=lambda pair: pair[1], reverse=True) |
|
Output: sorted(x, key=x.get) |
|
bleu_metric: 8.425741883707015 |
|
---------- |
|
NL: append a numpy array 'b' to a numpy array 'a' |
|
ref: np.vstack((a, b)) |
|
Output: a.reshape(a, -1, a1) |
|
bleu_metric: 23.901088824528134 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: print(concatenate((a, b), axis=0)) |
|
Output: print(a.shape[1, 3, 4]) |
|
bleu_metric: 15.325316503089068 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the second axis |
|
ref: print(concatenate((a, b), axis=1)) |
|
Output: print(concatenate((a, b), axis=1)) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: c = np.r_[(a[None, :], b[None, :])] |
|
Output: print(a.shape[1, 3, 4]) |
|
bleu_metric: 9.146501935450095 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: np.array((a, b)) |
|
Output: print(a.shape[1, 3, 4]) |
|
bleu_metric: 15.911783110981517 |
|
---------- |
|
NL: fetch address information for host 'google.com' ion port 80 |
|
ref: print(socket.getaddrinfo('google.com', 80)) |
|
Output: socket.send('HTTP/1.0 200 OK') |
|
bleu_metric: 15.850829785188195 |
|
---------- |
|
NL: add a column 'day' with value 'sat' to dataframe `df` |
|
ref: df.xs('sat', level='day', drop_level=False) |
|
Output: df['d'].apply(lambda x: 'Y')) |
|
bleu_metric: 11.454635531478054 |
|
---------- |
|
NL: return a 401 unauthorized in django |
|
ref: return HttpResponse('Unauthorized', status=401) |
|
Output: return HttpResponse(status=204) |
|
bleu_metric: 32.28559902619133 |
|
---------- |
|
NL: flask set folder 'wherever' as the default template folder |
|
ref: Flask(__name__, template_folder='wherever') |
|
Output: app.path.join(__file__, os.dirname(__file__), 'app')) |
|
bleu_metric: 10.457995018881574 |
|
---------- |
|
NL: how do i insert into t1 (select * from t2) in sqlalchemy? |
|
ref: session.execute('INSERT INTO t1 (SELECT * FROM t2)') |
|
Output: db.session.commit() |
|
bleu_metric: 9.01760872773444 |
|
---------- |
|
NL: sort a list of lists 'c2' such that third row comes first |
|
ref: c2.sort(key=lambda row: row[2]) |
|
Output: sorted(lst, key=lambda x: x[2])) |
|
bleu_metric: 32.22538601891173 |
|
---------- |
|
NL: sorting a list of lists in python |
|
ref: c2.sort(key=lambda row: (row[2], row[1], row[0])) |
|
Output: [sorted(item) for item in data] |
|
bleu_metric: 3.9177831075306493 |
|
---------- |
|
NL: sorting a list of lists in python |
|
ref: c2.sort(key=lambda row: (row[2], row[1])) |
|
Output: [sorted(item) for item in data] |
|
bleu_metric: 5.9428726447571005 |
|
---------- |
|
NL: set font `arial` to display non-ascii characters in matplotlib |
|
ref: matplotlib.rc('font', **{'sans-serif': 'Arial', 'family': 'sans-serif'}) |
|
Output: plt.setp(loc=('\u2022', 'ignore') |
|
bleu_metric: 7.494955959649734 |
|
---------- |
|
NL: convert datetime column 'date' of pandas dataframe 'df' to ordinal |
|
ref: df['date'].apply(lambda x: x.toordinal()) |
|
Output: df['date'] = df['date'].dt.strftime('%d%m%Y') |
|
bleu_metric: 26.66090188234886 |
|
---------- |
|
NL: get html source of selenium webelement `element` |
|
ref: element.get_attribute('innerHTML') |
|
Output: driver.find_element_by_xpath("//*[@id='submit']/text()") |
|
bleu_metric: 12.173115521158184 |
|
---------- |
|
NL: get the integer location of a key `bob` in a pandas data frame |
|
ref: df.index.get_loc('bob') |
|
Output: df.columns = df['state'].get_dict() |
|
bleu_metric: 15.76777026245066 |
|
---------- |
|
NL: open a 'gnome' terminal from python script and run 'sudo apt-get update' command. |
|
ref: os.system('gnome-terminal -e \'bash -c "sudo apt-get update; exec bash"\'') |
|
Output: os.system('start "$file"') |
|
bleu_metric: 14.726128825673209 |
|
---------- |
|
NL: add an item with key 'third_key' and value 1 to an dictionary `my_dict` |
|
ref: my_dict.update({'third_key': 1}) |
|
Output: default_dict.update({'key1': 1, 'position': 2}) |
|
bleu_metric: 35.95818888322724 |
|
---------- |
|
NL: declare an array |
|
ref: my_list = [] |
|
Output: intarray = array('i') |
|
bleu_metric: 15.619699684601276 |
|
---------- |
|
NL: insert item `12` to a list `my_list` |
|
ref: my_list.append(12) |
|
Output: my_list.insert(0, k) |
|
bleu_metric: 24.446151121745054 |
|
---------- |
|
NL: add an entry 'wuggah' at the beginning of list `mylist` |
|
ref: myList.insert(0, 'wuggah') |
|
Output: a.append('b') |
|
bleu_metric: 21.64910073203448 |
|
---------- |
|
NL: convert a hex-string representation to actual bytes |
|
ref: """\\xF3\\xBE\\x80\\x80""".replace('\\x', '').decode('hex') |
|
Output: binascii.unhexlify('\x00\x80')[2:] |
|
bleu_metric: 4.9663342844865035 |
|
---------- |
|
NL: select the last column of dataframe `df` |
|
ref: df[df.columns[-1]] |
|
Output: df.drop(df.columns[-1]] |
|
bleu_metric: 69.30977286178778 |
|
---------- |
|
NL: get the first value from dataframe `df` where column 'letters' is equal to 'c' |
|
ref: df.loc[df['Letters'] == 'C', 'Letters'].values[0] |
|
Output: df[df['column'] == 'B'] |
|
bleu_metric: 25.294817005134707 |
|
---------- |
|
NL: converting two lists `[1, 2, 3]` and `[4, 5, 6]` into a matrix |
|
ref: np.column_stack(([1, 2, 3], [4, 5, 6])) |
|
Output: np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
bleu_metric: 53.858386640481605 |
|
---------- |
|
NL: get the type of `i` |
|
ref: type(i) |
|
Output: print(isinstance(a)) |
|
bleu_metric: 22.679164443904003 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get the type of variable `variable_name` |
|
ref: print(type(variable_name)) |
|
Output: print(get_name) |
|
bleu_metric: 24.795364698947967 |
|
---------- |
|
NL: get the 5th item of a generator |
|
ref: next(itertools.islice(range(10), 5, 5 + 1)) |
|
Output: next(it) |
|
bleu_metric: 2.7474047213893544 |
|
---------- |
|
NL: print a string `word` with string format |
|
ref: print('"{}"'.format(word)) |
|
Output: print('Hello, {0}'.format(word)) |
|
bleu_metric: 59.978201631280236 |
|
---------- |
|
NL: join a list of strings `list` using a space ' ' |
|
ref: """ """.join(list) |
|
Output: [')','','','','','','','','','','','','','', ' |
|
bleu_metric: 5.987016463560546 |
|
---------- |
|
NL: create list `y` containing two empty lists |
|
ref: y = [[] for n in range(2)] |
|
Output: listy = [[] for i in range(3)] |
|
bleu_metric: 49.35578819979933 |
|
---------- |
|
NL: read a file 'c:/name/mydocuments/numbers' into a list `data` |
|
ref: data = [line.strip() for line in open('C:/name/MyDocuments/numbers', 'r')] |
|
Output: data = [r[i] for i in open('myfile.txt')] |
|
bleu_metric: 20.807540769186392 |
|
---------- |
|
NL: delete all occurrences of character 'i' in string 'it is icy' |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: re.sub('i', '', 'I', 'it is icy') |
|
bleu_metric: 22.408895662889165 |
|
---------- |
|
NL: delete all instances of a character 'i' in a string 'it is icy' |
|
ref: re.sub('i', '', 'it is icy') |
|
Output: re.sub('i', '', 'it is icy') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: delete all characters "i" in string "it is icy" |
|
ref: """it is icy""".replace('i', '') |
|
Output: re.sub('[^i]', '', 'I', text) |
|
bleu_metric: 22.722445488928127 |
|
---------- |
|
NL: how to delete all instances of a character in a string in python? |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: """""".join([i for i in range(100) if i!= 'i']) |
|
bleu_metric: 59.20060650358378 |
|
---------- |
|
NL: drop rows of pandas dataframe `df` having nan in column at index "1" |
|
ref: df.dropna(subset=[1]) |
|
Output: df.drop(df.index[[1, 3]], inplace=True) |
|
bleu_metric: 12.91802583371725 |
|
---------- |
|
NL: get elements from list `mylist`, that have a field `n` value 30 |
|
ref: [x for x in myList if x.n == 30] |
|
Output: myList = [i for i in range(10) if i % 2 == 0] |
|
bleu_metric: 12.58220555845937 |
|
---------- |
|
NL: converting list of strings `intstringlist` to list of integer `nums` |
|
ref: nums = [int(x) for x in intstringlist] |
|
Output: [int(x) for x in intstringlist] |
|
bleu_metric: 83.9234989944319 |
|
---------- |
|
NL: convert list of string numbers into list of integers |
|
ref: map(int, eval(input('Enter the unfriendly numbers: '))) |
|
Output: [int(i) for i in str_list] |
|
bleu_metric: 7.290792403968443 |
|
---------- |
|
NL: print "." without newline |
|
ref: sys.stdout.write('.') |
|
Output: print('\n'.join(str(x)) |
|
bleu_metric: 15.911783110981517 |
|
---------- |
|
NL: round off the float that is the product of `2.52 * 100` and convert it to an int |
|
ref: int(round(2.51 * 100)) |
|
Output: int(math.pack('100', struct.pack('100', int(2))) |
|
bleu_metric: 12.920725243713852 |
|
---------- |
|
NL: find all files in directory "/mydir" with extension ".txt" |
|
ref: for file in glob.glob('*.txt'): |
|
pass |
|
Output: results += [each for each in os.listdir('myfile.txt') if each.endswith('.txt'): |
|
|
|
bleu_metric: 17.995816286711673 |
|
---------- |
|
NL: find all files in directory "/mydir" with extension ".txt" |
|
ref: for file in os.listdir('/mydir'): |
|
if file.endswith('.txt'): |
|
pass |
|
Output: results += [each for each in os.listdir('myfile.txt') if each.endswith('.txt'): |
|
|
|
bleu_metric: 46.726782846422246 |
|
---------- |
|
NL: find all files in directory "/mydir" with extension ".txt" |
|
ref: for (root, dirs, files) in os.walk('/mydir'): |
|
for file in files: |
|
if file.endswith('.txt'): |
|
pass |
|
Output: results += [each for each in os.listdir('myfile.txt') if each.endswith('.txt'): |
|
|
|
bleu_metric: 31.01992438627778 |
|
---------- |
|
NL: plot dataframe `df` without a legend |
|
ref: df.plot(legend=False) |
|
Output: plt.legend(loc=2, fontsize='y') |
|
bleu_metric: 13.380161378318956 |
|
---------- |
|
NL: loop through the ip address range "192.168.x.x" |
|
ref: for i in range(256): |
|
for j in range(256): |
|
ip = ('192.168.%d.%d' % (i, j)) |
|
print(ip) |
|
Output: for i in range(0, 10) |
|
bleu_metric: 2.18006837039135 |
|
---------- |
|
NL: loop through the ip address range "192.168.x.x" |
|
ref: for (i, j) in product(list(range(256)), list(range(256))): |
|
pass |
|
Output: for i in range(0, 10) |
|
bleu_metric: 3.8730052084654263 |
|
---------- |
|
NL: loop through the ip address range "192.168.x.x" |
|
ref: generator = iter_iprange('192.168.1.1', '192.168.255.255', step=1) |
|
Output: for i in range(0, 10) |
|
bleu_metric: 2.8194161881384923 |
|
---------- |
|
NL: sum the corresponding decimal values for binary values of each boolean element in list `x` |
|
ref: sum(1 << i for i, b in enumerate(x) if b) |
|
Output: sum(map(int, x)) |
|
bleu_metric: 10.55672713033355 |
|
---------- |
|
NL: write multiple strings `line1`, `line2` and `line3` in one line in a file `target` |
|
ref: target.write('%r\n%r\n%r\n' % (line1, line2, line3)) |
|
Output: f.write('\n') |
|
bleu_metric: 8.523846965585486 |
|
---------- |
|
NL: convert list of lists `data` into a flat list |
|
ref: [y for x in data for y in (x if isinstance(x, list) else [x])] |
|
Output: [item for sublist in l for item in sublist] |
|
bleu_metric: 6.735737120156013 |
|
---------- |
|
NL: print new line character as `\n` in a string `foo\nbar` |
|
ref: print('foo\nbar'.encode('string_escape')) |
|
Output: print('\n'.join(parts)) |
|
bleu_metric: 23.92121113361141 |
|
---------- |
|
NL: remove last comma character ',' in string `s` |
|
ref: """""".join(s.rsplit(',', 1)) |
|
Output: s = s.replace(',', '') |
|
bleu_metric: 24.4545047029932 |
|
---------- |
|
NL: calculate the mean of each element in array `x` with the element previous to it |
|
ref: (x[1:] + x[:-1]) / 2 |
|
Output: x = np.mean(a, axis=1) |
|
bleu_metric: 9.241605197022109 |
|
---------- |
|
NL: get an array of the mean of each two consecutive values in numpy array `x` |
|
ref: x[:-1] + (x[1:] - x[:-1]) / 2 |
|
Output: np.mean(np.arange(len(x)) + 3).mean(axis=1)) |
|
bleu_metric: 7.6047020452233385 |
|
---------- |
|
NL: load data containing `utf-8` from file `new.txt` into numpy array `arr` |
|
ref: arr = numpy.fromiter(codecs.open('new.txt', encoding='utf-8'), dtype='<U2') |
|
Output: data = numpy.loadtxt('file.txt', 'utf-8') |
|
bleu_metric: 25.88323054958255 |
|
---------- |
|
NL: reverse sort list of dicts `l` by value for key `time` |
|
ref: l = sorted(l, key=itemgetter('time'), reverse=True) |
|
Output: sorted(lst, key=lambda d: (d['time'], d['time'], d['time'], reverse=True |
|
bleu_metric: 17.7946690947194 |
|
---------- |
|
NL: sort a list of dictionary `l` based on key `time` in descending order |
|
ref: l = sorted(l, key=lambda a: a['time'], reverse=True) |
|
Output: l = sorted(l, key=lambda x: order['time'], reverse=True) |
|
bleu_metric: 80.40514736345938 |
|
---------- |
|
NL: get rows of dataframe `df` that match regex '(hel|just)' |
|
ref: df.loc[df[0].str.contains('(Hel|Just)')] |
|
Output: df[df.str.startswith('(?=.)', '|#')] |
|
bleu_metric: 29.906271972271124 |
|
---------- |
|
NL: find the string in `your_string` between two special characters "[" and "]" |
|
ref: re.search('\\[(.*)\\]', your_string).group(1) |
|
Output: re.search('(.*?)\\[^\\w\\s]', my_string) |
|
bleu_metric: 35.5402294764931 |
|
---------- |
|
NL: how to create a list of date string in 'yyyymmdd' format with python pandas? |
|
ref: [d.strftime('%Y%m%d') for d in pandas.date_range('20130226', '20130302')] |
|
Output: pd.to_datetime(str(d.values, '%Y-%m-%dT%H:%M:% |
|
bleu_metric: 12.00990216299384 |
|
---------- |
|
NL: count number of times string 'brown' occurred in string 'the big brown fox is brown' |
|
ref: """The big brown fox is brown""".count('brown') |
|
Output: """ """.join(['Pplit', 'aaa']) |
|
bleu_metric: 31.276700211004304 |
|
---------- |
|
NL: decode json string `request.body` to python dict |
|
ref: json.loads(request.body) |
|
Output: json.loads(request.body) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: download the file from url `url` and save it under file `file_name` |
|
ref: urllib.request.urlretrieve(url, file_name) |
|
Output: file_name = open('file.txt', filename) |
|
bleu_metric: 15.53712569276035 |
|
---------- |
|
NL: split string `text` by space |
|
ref: text.split() |
|
Output: text = re.split('\\s+') |
|
bleu_metric: 20.333448190047886 |
|
---------- |
|
NL: split string `text` by "," |
|
ref: text.split(',') |
|
Output: text.split(',') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: split string `line` into a list by whitespace |
|
ref: line.split() |
|
Output: [item.strip() for item in mylist] |
|
bleu_metric: 14.283632578659287 |
|
---------- |
|
NL: replace dot characters '.' associated with ascii letters in list `s` with space ' ' |
|
ref: [re.sub('(?<!\\d)\\.(?!\\d)', ' ', i) for i in s] |
|
Output: re.sub('[^\\w-]','', s) |
|
bleu_metric: 18.60592450912929 |
|
---------- |
|
NL: sort list `list_of_strings` based on second index of each string `s` |
|
ref: sorted(list_of_strings, key=lambda s: s.split(',')[1]) |
|
Output: sorted(list_of_tuples, key=lambda s: s.split('_')[1])) |
|
bleu_metric: 70.64070210210579 |
|
---------- |
|
NL: call multiple bash function 'vasp' and 'tee tee_output' using '|' |
|
ref: subprocess.check_call('vasp | tee tee_output', shell=True) |
|
Output: subprocess.call('zsh -c "echo $0'") |
|
bleu_metric: 15.384750052099497 |
|
---------- |
|
NL: eliminate all strings from list `lst` |
|
ref: [element for element in lst if isinstance(element, int)] |
|
Output: """""".join(lst) |
|
bleu_metric: 9.980554701686325 |
|
---------- |
|
NL: get all the elements except strings from the list 'lst'. |
|
ref: [element for element in lst if not isinstance(element, str)] |
|
Output: [x for x in lst if x[1] == 'C' in x] |
|
bleu_metric: 15.047149445189383 |
|
---------- |
|
NL: sort a list of dictionaries `list_to_be_sorted` by the value of the dictionary key `name` |
|
ref: newlist = sorted(list_to_be_sorted, key=lambda k: k['name']) |
|
Output: sorted(list_of_dct, key=lambda k: k['name'])) |
|
bleu_metric: 73.36726069437738 |
|
---------- |
|
NL: sort a list of dictionaries `l` by values in key `name` in descending order |
|
ref: newlist = sorted(l, key=itemgetter('name'), reverse=True) |
|
Output: sorted(d, key=operator.itemgetter('name', 'age')) |
|
bleu_metric: 35.3774707378071 |
|
---------- |
|
NL: how do i sort a list of dictionaries by values of the dictionary in python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('name')) |
|
Output: list.sort(key=operator.itemgetter('name', 'age')) |
|
bleu_metric: 69.91461503583824 |
|
---------- |
|
NL: how do i sort a list of dictionaries by values of the dictionary in python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('age')) |
|
Output: list.sort(key=operator.itemgetter('name', 'age')) |
|
bleu_metric: 69.91461503583824 |
|
---------- |
|
NL: how to sort a dataframe by the ocurrences in a column in python (pandas) |
|
ref: df.groupby('prots').sum().sort('scores', ascending=False) |
|
Output: df.sort_values(['Peak', 'Weeks'], ascending=[True, True]) |
|
bleu_metric: 15.057522385331268 |
|
---------- |
|
NL: join together with "," elements inside a list indexed with 'category' within a dictionary `trans` |
|
ref: """,""".join(trans['category']) |
|
Output: [item['one'] for item in list_of_dicts] |
|
bleu_metric: 11.133037663423181 |
|
---------- |
|
NL: concatenate array of strings `['a', 'b', 'c', 'd']` into a string |
|
ref: """""".join(['A', 'B', 'C', 'D']) |
|
Output: """""".join(['a', 'b', 'c', 'd']) |
|
bleu_metric: 61.82527625446008 |
|
---------- |
|
NL: get json data from restful service 'url' |
|
ref: json.load(urllib.request.urlopen('url')) |
|
Output: print(json.dumps(url, data=data)) |
|
bleu_metric: 18.76960278961121 |
|
---------- |
|
NL: remove all strings from a list a strings `sents` where the values starts with `@$\t` or `#` |
|
ref: [x for x in sents if not x.startswith('@$\t') and not x.startswith('#')] |
|
Output: [x for x in my_list if x.startswith('#')] |
|
bleu_metric: 36.8758127348874 |
|
---------- |
|
NL: django filter by hour |
|
ref: Entry.objects.filter(pub_date__contains='08:00') |
|
Output: Entry.objects.filter(created__year='2011', {'_date': '2011'}) |
|
bleu_metric: 30.05180557366462 |
|
---------- |
|
NL: sort a list of dictionary `list` first by key `points` and then by `time` |
|
ref: list.sort(key=lambda item: (item['points'], item['time'])) |
|
Output: list.sort(key=lambda x: x['time']) |
|
bleu_metric: 40.633530232106814 |
|
---------- |
|
NL: convert datetime object `(1970, 1, 1)` to seconds |
|
ref: (t - datetime.datetime(1970, 1, 1)).total_seconds() |
|
Output: datetime.datetime.now().strftime('%H:%M:%S') |
|
bleu_metric: 15.415064977510756 |
|
---------- |
|
NL: insert `_suff` before the file extension in `long.file.name.jpg` or replace `_a` with `suff` if it precedes the extension. |
|
ref: re.sub('(\\_a)?\\.([^\\.]*)$', '_suff.\\2', 'long.file.name.jpg') |
|
Output: os.path.splitext('/home/to/somefile.txt') |
|
bleu_metric: 3.7217110227905947 |
|
---------- |
|
NL: reload a module `module` |
|
ref: import imp |
|
imp.reload(module) |
|
Output: importlib.import_module('foo.b') |
|
bleu_metric: 17.03318603763928 |
|
---------- |
|
NL: convert integer `number` into an unassigned integer |
|
ref: struct.unpack('H', struct.pack('h', number)) |
|
Output: int('1 + str(n)[-1] |
|
bleu_metric: 9.01224794878171 |
|
---------- |
|
NL: convert int values in list `numlist` to float |
|
ref: numlist = [float(x) for x in numlist] |
|
Output: float(map(int, ['1', '3'], ['0', '4']]) |
|
bleu_metric: 7.039774105336835 |
|
---------- |
|
NL: write dataframe `df`, excluding index, to a csv file |
|
ref: df.to_csv(filename, index=False) |
|
Output: df.to_csv(filename, index=False) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert a urllib unquoted string `unescaped` to a json data `json_data` |
|
ref: json_data = json.loads(unescaped) |
|
Output: json.dumps({'hi': 'foo'}) |
|
bleu_metric: 14.247788801610147 |
|
---------- |
|
NL: create a list containing all ascii characters as its elements |
|
ref: [chr(i) for i in range(127)] |
|
Output: [int(x) for x in list('\u0420', '\u0420'] |
|
bleu_metric: 11.71291646655074 |
|
---------- |
|
NL: write `newfilebytes` to a binary file `newfile` |
|
ref: newFile.write(struct.pack('5B', *newFileBytes)) |
|
Output: open('file', 'wb').write('\n'.join(write)) |
|
bleu_metric: 16.973628531343277 |
|
---------- |
|
NL: python regex - check for a capital letter with a following lowercase in string `string` |
|
ref: re.sub('^[A-Z0-9]*(?![a-z])', '', string) |
|
Output: re.sub('[^A-Z][\\w-]*', '', s) |
|
bleu_metric: 31.75248595372921 |
|
---------- |
|
NL: get the last key of dictionary `dict` |
|
ref: list(dict.keys())[-1] |
|
Output: max(dict.keys()) |
|
bleu_metric: 50.17507694885614 |
|
---------- |
|
NL: write line "hi there" to file `f` |
|
ref: print('hi there', file=f) |
|
Output: f.write('hi there\n') |
|
bleu_metric: 35.41698766144061 |
|
---------- |
|
NL: write line "hi there" to file `myfile` |
|
ref: f = open('myfile', 'w') |
|
f.write('hi there\n') |
|
f.close() |
|
Output: print('myfile.txt', open('myfile.txt')) |
|
bleu_metric: 16.098380502753933 |
|
---------- |
|
NL: write line "hello" to file `somefile.txt` |
|
ref: with open('somefile.txt', 'a') as the_file: |
|
the_file.write('Hello\n') |
|
Output: f.write('foo\n') |
|
bleu_metric: 14.805399561478843 |
|
---------- |
|
NL: convert unicode string `s` to ascii |
|
ref: s.encode('iso-8859-15') |
|
Output: s.decode('ascii', 'ignore') |
|
bleu_metric: 24.022110864391532 |
|
---------- |
|
NL: django get maximum value associated with field 'added' in model `authorizedemail` |
|
ref: AuthorizedEmail.objects.filter(group=group).order_by('-added')[0] |
|
Output: MyModel.objects.filter(userprofile__in=['title', 'Bob']) |
|
bleu_metric: 23.364722604693753 |
|
---------- |
|
NL: find all numbers and dots from a string `text` using regex |
|
ref: re.findall('Test([0-9.]*[0-9]+)', text) |
|
Output: re.findall('\\d+', '', re.findall('\\d+', s)) |
|
bleu_metric: 20.563241139732103 |
|
---------- |
|
NL: python regex to find all numbers and dots from 'text' |
|
ref: re.findall('Test([\\d.]*\\d+)', text) |
|
Output: re.findall('\\d+', s) |
|
bleu_metric: 27.703746325324747 |
|
---------- |
|
NL: execute script 'script.ps1' using 'powershell.exe' shell |
|
ref: os.system('powershell.exe', 'script.ps1') |
|
Output: subprocess.call('start "$file.py', shell=True) |
|
bleu_metric: 14.400124446705304 |
|
---------- |
|
NL: sort a list of tuples `b` by third item in the tuple |
|
ref: b.sort(key=lambda x: x[1][2]) |
|
Output: sorted(b, key=lambda x: x[1]) |
|
bleu_metric: 56.20639922239585 |
|
---------- |
|
NL: get a list of all keys in cassandra database `cf` with pycassa |
|
ref: list(cf.get_range().get_keys()) |
|
Output: df.query('foo') |
|
bleu_metric: 13.532330504290599 |
|
---------- |
|
NL: create a datetime with the current date & time |
|
ref: datetime.datetime.now() |
|
Output: datetime.datetime.now().isoformat() |
|
bleu_metric: 61.90429960963545 |
|
---------- |
|
NL: get the index of an integer `1` from a list `lst` if the list also contains boolean items |
|
ref: next(i for i, x in enumerate(lst) if not isinstance(x, bool) and x == 1) |
|
Output: [i for i, x in enumerate(lst) if x == 0] |
|
bleu_metric: 42.57822397135907 |
|
---------- |
|
NL: subtract 13 from every number in a list `a` |
|
ref: a[:] = [(x - 13) for x in a] |
|
Output: [(x - x) for x in a] |
|
bleu_metric: 51.44168902788183 |
|
---------- |
|
NL: choose a random file from the directory contents of the c drive, `c:\\` |
|
ref: random.choice(os.listdir('C:\\')) |
|
Output: os.path.join(os.path.join(dir, '..')) |
|
bleu_metric: 23.41812326184747 |
|
---------- |
|
NL: get the highest element in absolute value in a numpy matrix `x` |
|
ref: max(x.min(), x.max(), key=abs) |
|
Output: max(x.max(), x.max()) |
|
bleu_metric: 56.52866525800724 |
|
---------- |
|
NL: get all urls within text `s` |
|
ref: re.findall('"(http.*?)"', s, re.MULTILINE | re.DOTALL) |
|
Output: re.findall('\\b(?:[^\\w+)\\s]', s) |
|
bleu_metric: 24.180681260144148 |
|
---------- |
|
NL: match urls whose domain doesn't start with `t` from string `document` using regex |
|
ref: re.findall('http://[^t][^s"]+\\.html', document) |
|
Output: re.compile('^[^a-zA-Z0-9-]*\\.\\.com/', my_string |
|
bleu_metric: 12.913533075470381 |
|
---------- |
|
NL: split a string `mystring` considering the spaces ' ' |
|
ref: mystring.replace(' ', '! !').split('!') |
|
Output: re.split('\\s+', myString) |
|
bleu_metric: 21.02813554778581 |
|
---------- |
|
NL: open file `path` with mode 'r' |
|
ref: open(path, 'r') |
|
Output: os.path.join(path) |
|
bleu_metric: 23.356898886410004 |
|
---------- |
|
NL: sum elements at the same index in list `data` |
|
ref: [[sum(item) for item in zip(*items)] for items in zip(*data)] |
|
Output: [sum(i) for i in zip(*data)] |
|
bleu_metric: 33.38084565798161 |
|
---------- |
|
NL: add a new axis to array `a` |
|
ref: a[:, (np.newaxis)] |
|
Output: ax.set_zlabel('a') |
|
bleu_metric: 14.873743701255318 |
|
---------- |
|
NL: send a signal `signal.SIGUSR1` to the current process |
|
ref: os.kill(os.getpid(), signal.SIGUSR1) |
|
Output: sys.stdout.flush() |
|
bleu_metric: 11.578838804156227 |
|
---------- |
|
NL: decode a hex string '4a4b4c' to UTF-8. |
|
ref: bytes.fromhex('4a4b4c').decode('utf-8') |
|
Output: print(str(a.encode('hex')) |
|
bleu_metric: 13.68218676135829 |
|
---------- |
|
NL: check if all elements in list `myList` are identical |
|
ref: all(x == myList[0] for x in myList) |
|
Output: len(set(mylist)) == 1 |
|
bleu_metric: 9.360791398475978 |
|
---------- |
|
NL: format number of spaces between strings `Python`, `:` and `Very Good` to be `20` |
|
ref: print('%*s : %*s' % (20, 'Python', 20, 'Very Good')) |
|
Output: """{:,}""".format(a) |
|
bleu_metric: 7.039722936059098 |
|
---------- |
|
NL: How to convert a string from CP-1251 to UTF-8? |
|
ref: d.decode('cp1251').encode('utf8') |
|
Output: d.decode('utf8') |
|
bleu_metric: 44.205744126521374 |
|
---------- |
|
NL: get rid of None values in dictionary `kwargs` |
|
ref: res = {k: v for k, v in list(kwargs.items()) if v is not None} |
|
Output: {i: v for i, v in list(d.items()) if v > 0} |
|
bleu_metric: 45.78553260521078 |
|
---------- |
|
NL: get rid of None values in dictionary `kwargs` |
|
ref: res = dict((k, v) for k, v in kwargs.items() if v is not None) |
|
Output: {i: v for i, v in list(d.items()) if v > 0} |
|
bleu_metric: 23.068994361104984 |
|
---------- |
|
NL: capture final output of a chain of system commands `ps -ef | grep something | wc -l` |
|
ref: subprocess.check_output('ps -ef | grep something | wc -l', shell=True) |
|
Output: subprocess.call('echo "foo"', shell=True) |
|
bleu_metric: 33.54121358422117 |
|
---------- |
|
NL: concatenate a list of strings `['a', 'b', 'c']` |
|
ref: """""".join(['a', 'b', 'c']) |
|
Output: print(('a', 'b', 'c')) |
|
bleu_metric: 42.80768209469581 |
|
---------- |
|
NL: find intersection data between series `s1` and series `s2` |
|
ref: pd.Series(list(set(s1).intersection(set(s2)))) |
|
Output: s1 = pd.DataFrame(s1, s2=None) |
|
bleu_metric: 10.722703083793286 |
|
---------- |
|
NL: sending http headers to `client` |
|
ref: client.send('HTTP/1.0 200 OK\r\n') |
|
Output: s.send('HTTP/1.0 200 OK\r\n') |
|
bleu_metric: 94.57416090031758 |
|
---------- |
|
NL: Format a datetime string `when` to extract date only |
|
ref: then = datetime.datetime.strptime(when, '%Y-%m-%d').date() |
|
Output: datetime.strptime('2012-11-13 10:33:54.227806', '%Y-%m-%d |
|
bleu_metric: 44.26225967370315 |
|
---------- |
|
NL: split a multi-line string `inputString` into separate strings |
|
ref: inputString.split('\n') |
|
Output: a, b, c = input('string_escape') |
|
bleu_metric: 21.972813874997158 |
|
---------- |
|
NL: Split a multi-line string ` a \n b \r\n c ` by new line character `\n` |
|
ref: ' a \n b \r\n c '.split('\n') |
|
Output: line.rstrip('\n\n') |
|
bleu_metric: 27.97842714002644 |
|
---------- |
|
NL: concatenate elements of list `b` by a colon ":" |
|
ref: """:""".join(str(x) for x in b) |
|
Output: print(repr(a)) |
|
bleu_metric: 4.9422115544674705 |
|
---------- |
|
NL: get the first object from a queryset in django model `Entry` |
|
ref: Entry.objects.filter()[:1].get() |
|
Output: Entry.objects.get_values('id') |
|
bleu_metric: 23.929967984761056 |
|
---------- |
|
NL: Calculate sum over all rows of 2D numpy array |
|
ref: a.sum(axis=1) |
|
Output: np.sum(a.shape[1:]) |
|
bleu_metric: 24.022110864391532 |
|
---------- |
|
NL: enable warnings using action 'always' |
|
ref: warnings.simplefilter('always') |
|
Output: os.kill(logging.DEBUG) |
|
bleu_metric: 21.105340631872636 |
|
---------- |
|
NL: concatenate items of list `l` with a space ' ' |
|
ref: print(' '.join(map(str, l))) |
|
Output: print(' '.join(map(str, l)) |
|
bleu_metric: 91.69729150999534 |
|
---------- |
|
NL: run script 'hello.py' with argument 'htmlfilename.htm' on terminal using python executable |
|
ref: subprocess.call(['python.exe', 'hello.py', 'htmlfilename.htm']) |
|
Output: subprocess.call('start "$file.py', shell=True) |
|
bleu_metric: 24.391589282046496 |
|
---------- |
|
NL: How can I parse a time string containing milliseconds in it with python? |
|
ref: time.strptime('30/03/09 16:31:32.123', '%d/%m/%y %H:%M:%S.%f') |
|
Output: time.strftime('%H:%M:%S,%f')) |
|
bleu_metric: 19.792633055621124 |
|
---------- |
|
NL: convert a string `my_string` with dot and comma into a float number `my_float` |
|
ref: my_float = float(my_string.replace(',', '')) |
|
Output: my_string.replace(',', '') |
|
bleu_metric: 62.69839476367552 |
|
---------- |
|
NL: convert a string `123,456.908` with dot and comma into a floating number |
|
ref: float('123,456.908'.replace(',', '')) |
|
Output: print(', '.join(str(12345)) |
|
bleu_metric: 21.93127055132894 |
|
---------- |
|
NL: set pythonpath in python script. |
|
ref: sys.path.append('/path/to/whatever') |
|
Output: os.path.abspath(__file__) |
|
bleu_metric: 14.91608246051739 |
|
---------- |
|
NL: split string 'Words, words, words.' using a regex '(\\W+)' |
|
ref: re.split('(\\W+)', 'Words, words, words.') |
|
Output: re.split('\\b(\\w+)', 'Words, words, words.') |
|
bleu_metric: 71.4022021970798 |
|
---------- |
|
NL: open a file `Output.txt` in append mode |
|
ref: file = open('Output.txt', 'a') |
|
Output: f = open('file.txt', 'r') |
|
bleu_metric: 54.7332024239071 |
|
---------- |
|
NL: download a file "http://www.example.com/songs/mp3.mp3" over HTTP and save to "mp3.mp3" |
|
ref: urllib.request.urlretrieve('http://www.example.com/songs/mp3.mp3', 'mp3.mp3') |
|
Output: urllib.request.urlretrieve('http://randomsite.com/', 'rb').read() |
|
bleu_metric: 45.9127788668896 |
|
---------- |
|
NL: download a file `url` over HTTP and save to `file_name` |
|
ref: u = urllib.request.urlopen(url) |
|
Output: urllib.request.urlretrieve('http://example.com/file.gz') |
|
bleu_metric: 19.228544753133757 |
|
---------- |
|
NL: download a file 'http://www.example.com/' over HTTP |
|
ref: response = urllib.request.urlopen('http://www.example.com/') |
|
html = response.read() |
|
Output: urllib.request.urlretrieve('http://www.com/file.com/file.gz') |
|
bleu_metric: 41.91356463630533 |
|
---------- |
|
NL: download a file `url` over HTTP |
|
ref: r = requests.get(url) |
|
Output: r = requests.get(url) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: download a file `url` over HTTP and save to "10MB" |
|
ref: response = requests.get(url, stream=True) |
|
Output: urllib.request.urlretrieve('http://example.com/file.com/file.gz') |
|
bleu_metric: 7.265857755970445 |
|
---------- |
|
NL: argparse add argument with flag '--version' and version action of '%(prog)s 2.0' to parser `parser` |
|
ref: parser.add_argument('--version', action='version', version='%(prog)s 2.0') |
|
Output: parser.add_argument('--conf', nargs='*') |
|
bleu_metric: 24.648885368725924 |
|
---------- |
|
NL: remove key 'c' from dictionary `d` |
|
ref: {i: d[i] for i in d if i != 'c'} |
|
Output: d = {'a': 1, 'c': 2, 'c': 3, 'c': 3} |
|
bleu_metric: 10.884267615693712 |
|
---------- |
|
NL: Create new DataFrame object by merging columns "key" of dataframes `split_df` and `csv_df` and rename the columns from dataframes `split_df` and `csv_df` with suffix `_left` and `_right` respectively |
|
ref: pd.merge(split_df, csv_df, on=['key'], suffixes=('_left', '_right')) |
|
Output: pd.concat([df_1, df_2.columns], axis=1, on=['A_B', 'B' |
|
bleu_metric: 24.624806058504372 |
|
---------- |
|
NL: Split a string `s` by space with `4` splits |
|
ref: s.split(' ', 4) |
|
Output: [s.split('\t')[-1] for s in s.split()] |
|
bleu_metric: 19.696330878717074 |
|
---------- |
|
NL: read keyboard-input |
|
ref: input('Enter your input:') |
|
Output: sys.stdout.flush() |
|
bleu_metric: 17.6625510283176 |
|
---------- |
|
NL: enable debug mode on Flask application `app` |
|
ref: app.run(debug=True) |
|
Output: app.run(debug=True) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: python save list `mylist` to file object 'save.txt' |
|
ref: pickle.dump(mylist, open('save.txt', 'wb')) |
|
Output: file.write('myfile.txt', 'wb') |
|
bleu_metric: 42.60520663282873 |
|
---------- |
|
NL: Multiply a matrix `P` with a 3d tensor `T` in scipy |
|
ref: scipy.tensordot(P, T, axes=[1, 1]).swapaxes(0, 1) |
|
Output: np.dot(x, y) |
|
bleu_metric: 4.172184841899331 |
|
---------- |
|
NL: Create 3d array of zeroes of size `(3,3,3)` |
|
ref: numpy.zeros((3, 3, 3)) |
|
Output: np.zeros((3, 3)) |
|
bleu_metric: 75.33808072882879 |
|
---------- |
|
NL: cut off the last word of a sentence `content` |
|
ref: """ """.join(content.split(' ')[:-1]) |
|
Output: """ """.join(s.split()) |
|
bleu_metric: 46.40451719480771 |
|
---------- |
|
NL: convert scalar `x` to array |
|
ref: x = np.asarray(x).reshape(1, -1)[(0), :] |
|
Output: np.zeros((x, x) for x in s) |
|
bleu_metric: 9.777229794850028 |
|
---------- |
|
NL: sum all elements of nested list `L` |
|
ref: sum(sum(i) if isinstance(i, list) else i for i in L) |
|
Output: sum(sum(x) for x in list) |
|
bleu_metric: 18.410840441136763 |
|
---------- |
|
NL: convert hex string '470FC614' to a float number |
|
ref: struct.unpack('!f', '470FC614'.decode('hex'))[0] |
|
Output: struct.unpack('d', struct.pack('Q', 16)).decode('hex')) |
|
bleu_metric: 43.149269702667276 |
|
---------- |
|
NL: Multiple each value by `2` for all keys in a dictionary `my_dict` |
|
ref: my_dict.update((x, y * 2) for x, y in list(my_dict.items())) |
|
Output: dict((k, v) for k, v in my_dict.items()) |
|
bleu_metric: 28.26550613903659 |
|
---------- |
|
NL: running bash script 'sleep.sh' |
|
ref: subprocess.call('sleep.sh', shell=True) |
|
Output: subprocess.call('start command -c 'r', shell=True) |
|
bleu_metric: 55.7853798004205 |
|
---------- |
|
NL: Join elements of list `l` with a comma `,` |
|
ref: """,""".join(l) |
|
Output: [(x + x) for x, y in zip(l1, l2)] |
|
bleu_metric: 8.039313477786735 |
|
---------- |
|
NL: make a comma-separated string from a list `myList` |
|
ref: myList = ','.join(map(str, myList)) |
|
Output: myList = mylist[:n] |
|
bleu_metric: 10.218289380194193 |
|
---------- |
|
NL: reverse the list that contains 1 to 10 |
|
ref: list(reversed(list(range(10)))) |
|
Output: L[::-1] |
|
bleu_metric: 7.575149194183216 |
|
---------- |
|
NL: remove substring 'bag,' from a string 'lamp, bag, mirror' |
|
ref: print('lamp, bag, mirror'.replace('bag,', '')) |
|
Output: [m.strip() for m in x if m.endswith('@')] |
|
bleu_metric: 10.616735292999413 |
|
---------- |
|
NL: Reverse the order of words, delimited by `.`, in string `s` |
|
ref: """.""".join(s.split('.')[::-1]) |
|
Output: sorted(s, s.split()) |
|
bleu_metric: 9.489232285686615 |
|
---------- |
|
NL: convert epoch time represented as milliseconds `s` to string using format '%Y-%m-%d %H:%M:%S.%f' |
|
ref: datetime.datetime.fromtimestamp(s).strftime('%Y-%m-%d %H:%M:%S.%f') |
|
Output: print(s.strftime('%Y-%m-%d %H:%M:%S')) |
|
bleu_metric: 62.56418230541474 |
|
---------- |
|
NL: parse milliseconds epoch time '1236472051807' to format '%Y-%m-%d %H:%M:%S' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(1236472051807 / 1000.0)) |
|
Output: time.strftime('%Y-%m-%d %H:%M:%S') |
|
bleu_metric: 59.71758060527691 |
|
---------- |
|
NL: get the date 7 days before the current date |
|
ref: (datetime.datetime.now() - datetime.timedelta(days=7)).date() |
|
Output: (datetime.date(2010, 12, 31) + relativedelta(months=(+ 1))) |
|
bleu_metric: 23.713320246552005 |
|
---------- |
|
NL: sum elements at index `column` of each list in list `data` |
|
ref: print(sum(row[column] for row in data)) |
|
Output: data[sum(b) for b in zip(*data)] |
|
bleu_metric: 15.844501337268929 |
|
---------- |
|
NL: sum columns of a list `array` |
|
ref: [sum(row[i] for row in array) for i in range(len(array[0]))] |
|
Output: sum(sum(row[:, (1)] for row in mylist) |
|
bleu_metric: 21.03312756130989 |
|
---------- |
|
NL: encode binary string 'your string' to base64 code |
|
ref: base64.b64encode(bytes('your string', 'utf-8')) |
|
Output: print(content.encode('base64')) |
|
bleu_metric: 20.291424899466545 |
|
---------- |
|
NL: combine list of dictionaries `dicts` with the same keys in each list to a single dictionary |
|
ref: dict((k, [d[k] for d in dicts]) for k in dicts[0]) |
|
Output: dict((k, v) for d in dicts for k, v in list(d.items()) if k in d] |
|
bleu_metric: 28.548259613272815 |
|
---------- |
|
NL: Merge a nested dictionary `dicts` into a flat dictionary by concatenating nested values with the same key `k` |
|
ref: {k: [d[k] for d in dicts] for k in dicts[0]} |
|
Output: dict((k, v) for k, v in list(d.items())) |
|
bleu_metric: 8.608775825594615 |
|
---------- |
|
NL: How do I get the url parameter in a Flask view |
|
ref: request.args['myParam'] |
|
Output: request.url |
|
bleu_metric: 6.856953606192477 |
|
---------- |
|
NL: identify duplicate values in list `mylist` |
|
ref: [k for k, v in list(Counter(mylist).items()) if v > 1] |
|
Output: set(mylist)) |
|
bleu_metric: 2.0605095345578897 |
|
---------- |
|
NL: Insert directory 'apps' into directory `__file__` |
|
ref: sys.path.insert(1, os.path.join(os.path.dirname(__file__), 'apps')) |
|
Output: os.chdir(path) |
|
bleu_metric: 1.4431184819037772 |
|
---------- |
|
NL: modify sys.path for python module `subdir` |
|
ref: sys.path.append(os.path.join(os.path.dirname(__file__), 'subdir')) |
|
Output: my_path.append('/path/to/my_file.txt') |
|
bleu_metric: 10.285502024406256 |
|
---------- |
|
NL: Insert a 'None' value into a SQLite3 table. |
|
ref: db.execute("INSERT INTO present VALUES('test2', ?, 10)", (None,)) |
|
Output: cursor.execute('INSERT INTO table VALUES (%s, %s)', (None,)) |
|
bleu_metric: 53.301554843359774 |
|
---------- |
|
NL: flatten list `list_of_menuitems` |
|
ref: [image for menuitem in list_of_menuitems for image in menuitem] |
|
Output: list_of_lists = [list(f) for f in my_list] |
|
bleu_metric: 14.949751774990682 |
|
---------- |
|
NL: append elements of a set `b` to a list `a` |
|
ref: a.extend(b) |
|
Output: a.append(b) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: Append elements of a set to a list in Python |
|
ref: a.extend(list(b)) |
|
Output: a.extend(b) |
|
bleu_metric: 46.81294641285289 |
|
---------- |
|
NL: write the data of dataframe `df` into text file `np.txt` |
|
ref: np.savetxt('c:\\data\\np.txt', df.values, fmt='%d') |
|
Output: df.write.txt', header=None, delimiter='\t') |
|
bleu_metric: 17.503492126188856 |
|
---------- |
|
NL: write content of DataFrame `df` into text file 'c:\\data\\pandas.txt' |
|
ref: df.to_csv('c:\\data\\pandas.txt', header=None, index=None, sep=' ', mode='a') |
|
Output: df.to_csv('c:\\data\\data\\data\\t.txt', sep='\t') |
|
bleu_metric: 46.606880690561546 |
|
---------- |
|
NL: Split a string `x` by last occurrence of character `-` |
|
ref: print(x.rpartition('-')[0]) |
|
Output: x.split('=')[-1].rsplit() |
|
bleu_metric: 21.468316165048364 |
|
---------- |
|
NL: get the last part of a string before the character '-' |
|
ref: print(x.rsplit('-', 1)[0]) |
|
Output: print(x.rfind('-')[0]) |
|
bleu_metric: 60.109065739327065 |
|
---------- |
|
NL: upload file using FTP |
|
ref: ftp.storlines('STOR ' + filename, open(filename, 'r')) |
|
Output: webbrowser.open('http://example.com/file.gz') |
|
bleu_metric: 12.9205540673015 |
|
---------- |
|
NL: add one to the hidden web element with id 'XYZ' with selenium python script |
|
ref: browser.execute_script("document.getElementById('XYZ').value+='1'") |
|
Output: driver.find_element_by_xpath("//li/label/input[contains(..,'polishpottery')]") |
|
bleu_metric: 13.25451214611751 |
|
---------- |
|
NL: create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]` |
|
ref: np.maximum([2, 3, 4], [1, 5, 2]) |
|
Output: np.array([1, 2, 3], [2, 3, 4], [3, 4, 5]]) |
|
bleu_metric: 42.651255482235264 |
|
---------- |
|
NL: print a list `l` and move first 3 elements to the end of the list |
|
ref: print(l[3:] + l[:3]) |
|
Output: print(l[:5] + l[0]) |
|
bleu_metric: 50.02460338549947 |
|
---------- |
|
NL: loop over files in directory '.' |
|
ref: for fn in os.listdir('.'): |
|
if os.path.isfile(fn): |
|
pass |
|
Output: for os.path.join(path, filename) |
|
bleu_metric: 13.004471619759379 |
|
---------- |
|
NL: loop over files in directory `source` |
|
ref: for (root, dirs, filenames) in os.walk(source): |
|
for f in filenames: |
|
pass |
|
Output: for os.path.join(path, filename) |
|
bleu_metric: 7.344980037582256 |
|
---------- |
|
NL: create a random list of integers |
|
ref: [int(1000 * random.random()) for i in range(10000)] |
|
Output: randomList = [random.random() for _ in range(10)] |
|
bleu_metric: 34.3414769312466 |
|
---------- |
|
NL: Using %f with strftime() in Python to get microseconds |
|
ref: datetime.datetime.now().strftime('%H:%M:%S.%f') |
|
Output: datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
bleu_metric: 65.15366202853991 |
|
---------- |
|
NL: Google App Engine execute GQL query 'SELECT * FROM Schedule WHERE station = $1' with parameter `foo.key()` |
|
ref: db.GqlQuery('SELECT * FROM Schedule WHERE station = $1', foo.key()) |
|
Output: G.execute('SELECT * FROM foo WHERE bar = %s AND baz = %s', (param1, param2)) |
|
bleu_metric: 24.090844358935918 |
|
---------- |
|
NL: filter rows in pandas starting with alphabet 'f' using regular expression. |
|
ref: df.b.str.contains('^f') |
|
Output: df.dropna(lambda x: x.replace('\\[^\\w\\s]', 'A') |
|
bleu_metric: 10.727295782787309 |
|
---------- |
|
NL: print a 2 dimensional list `tab` as a table with delimiters |
|
ref: print('\n'.join('\t'.join(str(col) for col in row) for row in tab)) |
|
Output: print('\n'.join(map(str, row)) |
|
bleu_metric: 26.894705347686966 |
|
---------- |
|
NL: pandas: delete rows in dataframe `df` based on multiple columns values |
|
ref: df.set_index(list('BC')).drop(tuples, errors='ignore').reset_index() |
|
Output: df.drop(df.index[[1, 3]], axis=1) |
|
bleu_metric: 11.446641525222896 |
|
---------- |
|
NL: format the variables `self.goals` and `self.penalties` using string formatting |
|
ref: """({:d} goals, ${:d})""".format(self.goals, self.penalties) |
|
Output: """{0} {1}""".format(name='bar', 'change!') |
|
bleu_metric: 28.1073423324667 |
|
---------- |
|
NL: format string "({} goals, ${})" with variables `goals` and `penalties` |
|
ref: """({} goals, ${})""".format(self.goals, self.penalties) |
|
Output: """{} {}""".format(TotalAmount) |
|
bleu_metric: 30.199592877917368 |
|
---------- |
|
NL: format string "({0.goals} goals, ${0.penalties})" |
|
ref: """({0.goals} goals, ${0.penalties})""".format(self) |
|
Output: """{0} {1}""".format(name, 20) |
|
bleu_metric: 32.37295639418319 |
|
---------- |
|
NL: convert list of lists `L` to list of integers |
|
ref: [int(''.join(str(d) for d in x)) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 26.91716452870884 |
|
---------- |
|
NL: combine elements of each list in list `L` into digits of a single integer |
|
ref: [''.join(str(d) for d in x) for x in L] |
|
Output: int(''.join(map(str, x))) |
|
bleu_metric: 25.049995525110475 |
|
---------- |
|
NL: convert a list of lists `L` to list of integers |
|
ref: L = [int(''.join([str(y) for y in x])) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 18.058610039563465 |
|
---------- |
|
NL: write the elements of list `lines` concatenated by special character '\n' to file `myfile` |
|
ref: myfile.write('\n'.join(lines)) |
|
Output: with open('myfile.txt', 'w').read().write('\n') |
|
bleu_metric: 30.77874158297155 |
|
---------- |
|
NL: removing an element from a list based on a predicate 'X' or 'N' |
|
ref: [x for x in ['AAT', 'XAC', 'ANT', 'TTA'] if 'X' not in x and 'N' not in x] |
|
Output: [x for x in L if x is not None] |
|
bleu_metric: 7.979312731505724 |
|
---------- |
|
NL: Remove duplicate words from a string `text` using regex |
|
ref: text = re.sub('\\b(\\w+)( \\1\\b)+', '\\1', text) |
|
Output: re.sub('(?<=[a-z])\\r?\\w+', '\\1', s) |
|
bleu_metric: 43.796510807866646 |
|
---------- |
|
NL: count non zero values in each column in pandas data frame |
|
ref: df.astype(bool).sum(axis=1) |
|
Output: df.apply(lambda x: 0).sum() if sum(x) > 1) |
|
bleu_metric: 23.20305803246989 |
|
---------- |
|
NL: search for string that matches regular expression pattern '(?<!Distillr)\\\\AcroTray\\.exe' in string 'C:\\SomeDir\\AcroTray.exe' |
|
ref: re.search('(?<!Distillr)\\\\AcroTray\\.exe', 'C:\\SomeDir\\AcroTray.exe') |
|
Output: re.search('(?<=\\S+)', re.compile('\\.\\s+(?:\\.\\d+)', re |
|
bleu_metric: 30.06266967828333 |
|
---------- |
|
NL: split string 'QH QD JC KD JS' into a list on white spaces |
|
ref: """QH QD JC KD JS""".split() |
|
Output: [s.strip() for s in re.split(',')] |
|
bleu_metric: 14.962848372546667 |
|
---------- |
|
NL: search for occurrences of regex pattern '>.*<' in xml string `line` |
|
ref: print(re.search('>.*<', line).group(0)) |
|
Output: print(re.search('(?<=\\w+)', line)) |
|
bleu_metric: 47.71512105691513 |
|
---------- |
|
NL: erase all the contents of a file `filename` |
|
ref: open(filename, 'w').close() |
|
Output: open('filename', 'w').close() |
|
bleu_metric: 70.98108717509044 |
|
---------- |
|
NL: convert a string into datetime using the format '%Y-%m-%d %H:%M:%S.%f' |
|
ref: datetime.datetime.strptime(string_date, '%Y-%m-%d %H:%M:%S.%f') |
|
Output: datetime.strptime('2010-11-13 10:33:54.283Z', '%Y-%m-%d |
|
bleu_metric: 40.88633662916028 |
|
---------- |
|
NL: find the index of a list with the first element equal to '332' within the list of lists `thelist` |
|
ref: [index for index, item in enumerate(thelist) if item[0] == '332'] |
|
Output: [i for i, v in enumerate(L) if v[0] == 'id' in x] |
|
bleu_metric: 33.034466035625115 |
|
---------- |
|
NL: lower a string `text` and remove non-alphanumeric characters aside from space |
|
ref: re.sub('[^\\sa-zA-Z0-9]', '', text).lower().strip() |
|
Output: re.sub('[^\\w-zA-Z0-9]','', text) |
|
bleu_metric: 64.45968952353843 |
|
---------- |
|
NL: remove all non-alphanumeric characters except space from a string `text` and lower it |
|
ref: re.sub('(?!\\s)[\\W_]', '', text).lower().strip() |
|
Output: re.sub('[^0-9a-zA-Z0-9]', '', text) |
|
bleu_metric: 34.05969875105766 |
|
---------- |
|
NL: subscript text 'H20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='H\u2082O') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: subscript text 'H20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='$H_2O$') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: loop over a list `mylist` if sublists length equals 3 |
|
ref: [x for x in mylist if len(x) == 3] |
|
Output: [(x + 1) for x in mylist] |
|
bleu_metric: 27.97803653491597 |
|
---------- |
|
NL: initialize a list `lst` of 100 objects Object() |
|
ref: lst = [Object() for _ in range(100)] |
|
Output: [item for item in lst] |
|
bleu_metric: 11.786767588753086 |
|
---------- |
|
NL: create list `lst` containing 100 instances of object `Object` |
|
ref: lst = [Object() for i in range(100)] |
|
Output: [x for x in lst if x is not None] |
|
bleu_metric: 13.386745323687673 |
|
---------- |
|
NL: get the content of child tag with`href` attribute whose parent has css `someclass` |
|
ref: self.driver.find_element_by_css_selector('.someclass a').get_attribute('href') |
|
Output: soup.find_all('a', {'id':'st,'st_name':'st/content': 'content'} |
|
bleu_metric: 7.478822222889464 |
|
---------- |
|
NL: joining data from dataframe `df1` with data from dataframe `df2` based on matching values of column 'Date_Time' in both dataframes |
|
ref: df1.merge(df2, on='Date_Time') |
|
Output: s1 = pd.merge(df1, df2, how='inner', on=['user_id']) |
|
bleu_metric: 17.17218426146756 |
|
---------- |
|
NL: use `%s` operator to print variable values `str1` inside a string |
|
ref: 'first string is: %s, second one is: %s' % (str1, 'geo.tif') |
|
Output: print('{0}'.format(num)) |
|
bleu_metric: 5.68097120736594 |
|
---------- |
|
NL: Split a string by a delimiter in python |
|
ref: [x.strip() for x in '2.MATCHES $$TEXT$$ STRING'.split('$$TEXT$$')] |
|
Output: a.split('=') |
|
bleu_metric: 2.904501569386027 |
|
---------- |
|
NL: check if directory `directory ` exists and create it if necessary |
|
ref: if (not os.path.exists(directory)): |
|
os.makedirs(directory) |
|
Output: if (not os.path.exists(directory)): |
|
os.makedirs(directory) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: os.makedirs(path) |
|
Output: os.makedirs(path) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: distutils.dir_util.mkpath(path) |
|
Output: os.makedirs(path) |
|
bleu_metric: 40.661103887968814 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: os.makedirs(path) |
|
Output: os.makedirs(path) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Replace a separate word 'H3' by 'H1' in a string 'text' |
|
ref: re.sub('\\bH3\\b', 'H1', text) |
|
Output: re.sub('\\b(?<!\\w+)', '\\1', text) |
|
bleu_metric: 45.79927441960449 |
|
---------- |
|
NL: substitute ASCII letters in string 'aas30dsa20' with empty string '' |
|
ref: re.sub('\\D', '', 'aas30dsa20') |
|
Output: """{0}""".format(a) |
|
bleu_metric: 13.681843708157734 |
|
---------- |
|
NL: get digits only from a string `aas30dsa20` using lambda function |
|
ref: """""".join([x for x in 'aas30dsa20' if x.isdigit()]) |
|
Output: map(int, mystring.split(' ', 1)[0] |
|
bleu_metric: 7.1335710240663 |
|
---------- |
|
NL: access a tag called "name" in beautifulsoup `soup` |
|
ref: print(soup.find('name').string) |
|
Output: soup.findAll(text='Python') |
|
bleu_metric: 22.779746815932338 |
|
---------- |
|
NL: get a dictionary `records` of key-value pairs in PyMongo cursor `cursor` |
|
ref: records = dict((record['_id'], record) for record in cursor) |
|
Output: dict((k, v) for k, v in {'class': {'Foo': 'k': {'Foo': '}} |
|
bleu_metric: 8.882389583994751 |
|
---------- |
|
NL: Create new matrix object by concatenating data from matrix A and matrix B |
|
ref: np.concatenate((A, B)) |
|
Output: A = np.dot(a, b, c) |
|
bleu_metric: 17.77835117834348 |
|
---------- |
|
NL: concat two matrices `A` and `B` in numpy |
|
ref: np.vstack((A, B)) |
|
Output: np.concatenate((a, b)) |
|
bleu_metric: 29.502343631964045 |
|
---------- |
|
NL: Get the characters count in a file `filepath` |
|
ref: os.stat(filepath).st_size |
|
Output: sum(os.path.join(path) |
|
bleu_metric: 17.827531042796256 |
|
---------- |
|
NL: count the occurrences of item "a" in list `l` |
|
ref: l.count('a') |
|
Output: Counter(x in a for x in a) |
|
bleu_metric: 17.03318603763928 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: Counter(l) |
|
Output: Counter(l) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: [[x, l.count(x)] for x in set(l)] |
|
Output: Counter(l) |
|
bleu_metric: 2.190091937500515 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: dict(((x, l.count(x)) for x in set(l))) |
|
Output: Counter(l) |
|
bleu_metric: 1.5775358510206974 |
|
---------- |
|
NL: count the occurrences of item "b" in list `l` |
|
ref: l.count('b') |
|
Output: Counter(x in a for x in set(l)] |
|
bleu_metric: 11.114924776032007 |
|
---------- |
|
NL: copy file `srcfile` to directory `dstdir` |
|
ref: shutil.copy(srcfile, dstdir) |
|
Output: shutil.copyfile(file_file, file) |
|
bleu_metric: 25.406637407730738 |
|
---------- |
|
NL: find the key associated with the largest value in dictionary `x` whilst key is non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(a, key=lambda x: x[x]) |
|
bleu_metric: 10.970270231176839 |
|
---------- |
|
NL: get the largest key whose not associated with value of 0 in dictionary `x` |
|
ref: (k for k, v in x.items() if v != 0) |
|
Output: (k for k, v in x.items() if v!= 0) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get the largest key in a dictionary `x` with non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(k, v) |
|
bleu_metric: 8.44727061998314 |
|
---------- |
|
NL: Put the curser at beginning of the file |
|
ref: file.seek(0) |
|
Output: subprocess.call('mv /Foo/', 'r', shell=True) |
|
bleu_metric: 9.134423666564473 |
|
---------- |
|
NL: combine values from column 'b' and column 'a' of dataframe `df` into column 'c' of datafram `df` |
|
ref: df['c'] = np.where(df['a'].isnull, df['b'], df['a']) |
|
Output: df['c'] = df['b'].fillna(df['a']) |
|
bleu_metric: 50.85465237405449 |
|
---------- |
|
NL: remove key 'ele' from dictionary `d` |
|
ref: del d['ele'] |
|
Output: d = {key: val for key, val in list(d.items()) if val!= 42} |
|
bleu_metric: 5.166045454134253 |
|
---------- |
|
NL: Update datetime field in `MyModel` to be the existing `timestamp` plus 100 years |
|
ref: MyModel.objects.update(timestamp=F('timestamp') + timedelta(days=36524.25)) |
|
Output: dt = datetime.datetime.now().strftime('%Y-%m-%d') |
|
bleu_metric: 10.316767912798015 |
|
---------- |
|
NL: merge list `['it']` and list `['was']` and list `['annoying']` into one list |
|
ref: ['it'] + ['was'] + ['annoying'] |
|
Output: ['a', 'b', 'c', 'd'] |
|
bleu_metric: 19.408623270627203 |
|
---------- |
|
NL: increment a value with leading zeroes in a number `x` |
|
ref: str(int(x) + 1).zfill(len(x)) |
|
Output: x ='+ str(x) |
|
bleu_metric: 13.057811073335992 |
|
---------- |
|
NL: check if a pandas dataframe `df`'s index is sorted |
|
ref: all(df.index[:-1] <= df.index[1:]) |
|
Output: df.sort_index() |
|
bleu_metric: 3.1405961937021267 |
|
---------- |
|
NL: Convert tuple `t` to list |
|
ref: list(t) |
|
Output: tuple(t) |
|
bleu_metric: 75.98356856515926 |
|
---------- |
|
NL: Convert list `t` to tuple |
|
ref: tuple(l) |
|
Output: tuple(l) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Convert tuple `level1` to list |
|
ref: level1 = map(list, level1) |
|
Output: list1 = [item[0] for item in L] |
|
bleu_metric: 10.571070857151538 |
|
---------- |
|
NL: send the output of pprint object `dataobject` to file `logFile` |
|
ref: pprint.pprint(dataobject, logFile) |
|
Output: print(data.read()) |
|
bleu_metric: 18.885888592159468 |
|
---------- |
|
NL: get index of rows in column 'BoolCol' |
|
ref: df.loc[df['BoolCol']] |
|
Output: df.index |
|
bleu_metric: 2.5225322607845957 |
|
---------- |
|
NL: Create a list containing the indexes of rows where the value of column 'BoolCol' in dataframe `df` are equal to True |
|
ref: df.iloc[np.flatnonzero(df['BoolCol'])] |
|
Output: df.groupby('id').apply(lambda x: x.sum() == 'foo')) |
|
bleu_metric: 7.779637090949697 |
|
---------- |
|
NL: get list of indexes of rows where column 'BoolCol' values match True |
|
ref: df[df['BoolCol'] == True].index.tolist() |
|
Output: [df.index for index, g in enumerate(tuple, values)] |
|
bleu_metric: 11.679849482425555 |
|
---------- |
|
NL: get index of rows in dataframe `df` which column 'BoolCol' matches value True |
|
ref: df[df['BoolCol']].index.tolist() |
|
Output: df.loc[df['BoolCol'].isin(['id', 'Fruit']).tolist()]) |
|
bleu_metric: 35.63899712694302 |
|
---------- |
|
NL: change working directory to the directory `owd` |
|
ref: os.chdir(owd) |
|
Output: os.chdir(os.path.dirname(os.path.abspath(__file__)) |
|
bleu_metric: 19.554016376461796 |
|
---------- |
|
NL: insert data from a string `testfield` to sqlite db `c` |
|
ref: c.execute("INSERT INTO test VALUES (?, 'bar')", (testfield,)) |
|
Output: cursor.execute('SELECT * FROM table WHERE bar" FROM table WHERE column IN %s;+$', (1,)) |
|
bleu_metric: 24.03479325641683 |
|
---------- |
|
NL: decode string "\\x89\\n" into a normal string |
|
ref: """\\x89\\n""".decode('string_escape') |
|
Output: """\\xc3\\x85あ""".encode('utf-8') |
|
bleu_metric: 41.902845957302084 |
|
---------- |
|
NL: convert a raw string `raw_string` into a normal string |
|
ref: raw_string.decode('string_escape') |
|
Output: raw_string.decode('unicode_escape') |
|
bleu_metric: 65.80370064762462 |
|
---------- |
|
NL: convert a raw string `raw_byte_string` into a normal string |
|
ref: raw_byte_string.decode('unicode_escape') |
|
Output: raw_string.decode('unicode_escape') |
|
bleu_metric: 88.01117367933934 |
|
---------- |
|
NL: split a string `s` with into all strings of repeated characters |
|
ref: [m.group(0) for m in re.finditer('(\\d)\\1*', s)] |
|
Output: re.findall('\\w+', s) |
|
bleu_metric: 10.45716776939666 |
|
---------- |
|
NL: scatter a plot with x, y position of `np.random.randn(100)` and face color equal to none |
|
ref: plt.scatter(np.random.randn(100), np.random.randn(100), facecolors='none') |
|
Output: plt.show() |
|
bleu_metric: 0.8278521686370256 |
|
---------- |
|
NL: do a scatter plot with empty circles |
|
ref: plt.plot(np.random.randn(100), np.random.randn(100), 'o', mfc='none') |
|
Output: plt.scatter(np.random.randn(100), np.random.randn(100), np.randn(100 |
|
bleu_metric: 57.932844496915834 |
|
---------- |
|
NL: remove a div with a id `main-content` using beautifulsoup |
|
ref: soup.find('div', id='main-content').decompose() |
|
Output: soup.findAll(text='div', id='width=True) |
|
bleu_metric: 40.78097038402287 |
|
---------- |
|
NL: filter rows containing key word `ball` in column `ids` |
|
ref: df[df['ids'].str.contains('ball')] |
|
Output: print(df.query('User')['value'].filter(lambda x: x.year)) |
|
bleu_metric: 13.348189438082967 |
|
---------- |
|
NL: convert index at level 0 into a column in dataframe `df` |
|
ref: df.reset_index(level=0, inplace=True) |
|
Output: df.set_index([' 0', '0']) |
|
bleu_metric: 15.310245441182444 |
|
---------- |
|
NL: Add indexes in a data frame `df` to a column `index1` |
|
ref: df['index1'] = df.index |
|
Output: df.set_index(['Company', 'date']) |
|
bleu_metric: 15.911783110981517 |
|
---------- |
|
NL: convert pandas index in a dataframe to columns |
|
ref: df.reset_index(level=['tick', 'obs']) |
|
Output: df2 = df.set_index(['T', 'level2']) |
|
bleu_metric: 33.23485859915788 |
|
---------- |
|
NL: Get reverse of list items from list 'b' using extended slicing |
|
ref: [x[::-1] for x in b] |
|
Output: [::-1] for i in a] |
|
bleu_metric: 51.95895250321166 |
|
---------- |
|
NL: join each element in array `a` with element at the same index in array `b` as a tuple |
|
ref: np.array([zip(x, y) for x, y in zip(a, b)]) |
|
Output: [(a, b), (b, b)] |
|
bleu_metric: 22.319313765733384 |
|
---------- |
|
NL: zip two 2-d arrays `a` and `b` |
|
ref: np.array(zip(a.ravel(), b.ravel()), dtype='i4,i4').reshape(a.shape) |
|
Output: np.array(a) |
|
bleu_metric: 1.1785360562036349 |
|
---------- |
|
NL: convert list `list_of_ints` into a comma separated string |
|
ref: """,""".join([str(i) for i in list_of_ints]) |
|
Output: print(', '.join(l[:1]) |
|
bleu_metric: 22.587773654803488 |
|
---------- |
|
NL: Send a post request with raw data `DATA` and basic authentication with `username` and `password` |
|
ref: requests.post(url, data=DATA, headers=HEADERS_DICT, auth=(username, password)) |
|
Output: requests.get('https://username/post', json={'cheers': 'cheers'}) |
|
bleu_metric: 8.839374326825924 |
|
---------- |
|
NL: Find last occurrence of character '}' in string "abcd}def}" |
|
ref: 'abcd}def}'.rfind('}') |
|
Output: """{:.5}""".format(p.finditer('_') if '\\1'}) |
|
bleu_metric: 9.943312565640671 |
|
---------- |
|
NL: Iterate ove list `[1, 2, 3]` using list comprehension |
|
ref: print([item for item in [1, 2, 3]]) |
|
Output: [(x + y) for x in range(3)] |
|
bleu_metric: 10.524953179645163 |
|
---------- |
|
NL: extract all the values with keys 'x' and 'y' from a list of dictionaries `d` to list of tuples |
|
ref: [(x['x'], x['y']) for x in d] |
|
Output: [d for d in a if d['name'] == 'pluto'] |
|
bleu_metric: 13.446276862221726 |
|
---------- |
|
NL: get the filename without the extension from file 'hemanth.txt' |
|
ref: print(os.path.splitext(os.path.basename('hemanth.txt'))[0]) |
|
Output: os.path.splitext(filename, 'r') |
|
bleu_metric: 19.13913717974136 |
|
---------- |
|
NL: create a dictionary by adding each two adjacent elements in tuple `x` as key/value pair to it |
|
ref: dict(x[i:i + 2] for i in range(0, len(x), 2)) |
|
Output: dict(zip(x, y)) |
|
bleu_metric: 6.591862820334322 |
|
---------- |
|
NL: create a list containing flattened list `[['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']]` |
|
ref: values = sum([['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']], []) |
|
Output: [['a', 'b', 'c', 'd'], ['d', 'g', 'g', 'g'])] |
|
bleu_metric: 22.895991001938675 |
|
---------- |
|
NL: select rows in a dataframe `df` column 'closing_price' between two values 99 and 101 |
|
ref: df = df[(df['closing_price'] >= 99) & (df['closing_price'] <= 101)] |
|
Output: df[df['column_name'].str[1:] |
|
bleu_metric: 9.220008234645237 |
|
---------- |
|
NL: replace all occurences of newlines `\n` with `<br>` in dataframe `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df.replace('\n', '>').replace('\r\n') |
|
bleu_metric: 28.577933090423212 |
|
---------- |
|
NL: replace all occurrences of a string `\n` by string `<br>` in a pandas data frame `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df.replace({'\n': '<br>'}, regex=True) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: create a list containing each two adjacent letters in string `word` as its elements |
|
ref: [(x + y) for x, y in zip(word, word[1:])] |
|
Output: print(list(itertools.chain.from_iterable([''.join([''.join(i)) for i in myList |
|
bleu_metric: 6.9872837779786146 |
|
---------- |
|
NL: Get a list of pairs from a string `word` using lambda function |
|
ref: list(map(lambda x, y: x + y, word[:-1], word[1:])) |
|
Output: [item[0] for item in wordids] |
|
bleu_metric: 3.6045344658126863 |
|
---------- |
|
NL: extract a url from a string `myString` |
|
ref: print(re.findall('(https?://[^\\s]+)', myString)) |
|
Output: print(re.search('https://url.com/', mystring)) |
|
bleu_metric: 22.139039509717414 |
|
---------- |
|
NL: extract a url from a string `myString` |
|
ref: print(re.search('(?P<url>https?://[^\\s]+)', myString).group('url')) |
|
Output: print(re.search('https://url.com/', mystring)) |
|
bleu_metric: 19.3178688753789 |
|
---------- |
|
NL: remove all special characters, punctuation and spaces from a string `mystring` using regex |
|
ref: re.sub('[^A-Za-z0-9]+', '', mystring) |
|
Output: re.sub('[^\\w' ]", '', mystring) |
|
bleu_metric: 54.67160268053085 |
|
---------- |
|
NL: create a DatetimeIndex containing 13 periods of the second friday of each month starting from date '2016-01-01' |
|
ref: pd.date_range('2016-01-01', freq='WOM-2FRI', periods=13) |
|
Output: df.date_of_datetime(df.strftime('%Y-%m-%d') |
|
bleu_metric: 9.119026367194746 |
|
---------- |
|
NL: Create multidimensional array `matrix` with 3 rows and 2 columns in python |
|
ref: matrix = [[a, b], [c, d], [e, f]] |
|
Output: np.array([[0, 0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0 |
|
bleu_metric: 11.802861352393501 |
|
---------- |
|
NL: replace spaces with underscore |
|
ref: mystring.replace(' ', '_') |
|
Output: re.sub('\\([^\\w\\)', '', text) |
|
bleu_metric: 15.604242268653643 |
|
---------- |
|
NL: get an absolute file path of file 'mydir/myfile.txt' |
|
ref: os.path.abspath('mydir/myfile.txt') |
|
Output: os.path.abspath(mypath) |
|
bleu_metric: 36.304072644520666 |
|
---------- |
|
NL: split string `my_string` on white spaces |
|
ref: """ """.join(my_string.split()) |
|
Output: my_string.split('_') |
|
bleu_metric: 19.77851893672361 |
|
---------- |
|
NL: get filename without extension from file `filename` |
|
ref: os.path.splitext(filename)[0] |
|
Output: os.path.splitext('/path/to/filename.txt') |
|
bleu_metric: 33.70129264673147 |
|
---------- |
|
NL: get a list containing the sum of each element `i` in list `l` plus the previous elements |
|
ref: [sum(l[:i]) for i, _ in enumerate(l)] |
|
Output: [sum(x) for x in lst if x > 2] |
|
bleu_metric: 20.61396573920308 |
|
---------- |
|
NL: split a string `Docs/src/Scripts/temp` by `/` keeping `/` in the result |
|
ref: """Docs/src/Scripts/temp""".replace('/', '/\x00/').split('\x00') |
|
Output: s.split('\t')) |
|
bleu_metric: 4.851225711700038 |
|
---------- |
|
NL: shuffle columns of an numpy array 'r' |
|
ref: np.random.shuffle(np.transpose(r)) |
|
Output: np.random.shuffle(np.random.randint(0, 1, axis=1)) |
|
bleu_metric: 41.3948387915005 |
|
---------- |
|
NL: copy all values in a column 'B' to a new column 'D' in a pandas data frame 'df' |
|
ref: df['D'] = df['B'] |
|
Output: df['B'] = df['B'] |
|
bleu_metric: 80.03203203844998 |
|
---------- |
|
NL: find a value within nested json 'data' where the key inside another key 'B' is unknown. |
|
ref: list(data['A']['B'].values())[0]['maindata'][0]['Info'] |
|
Output: data[(key=lambda x: x['Date']) & (x['Date']['count'])] |
|
bleu_metric: 17.180939455924943 |
|
---------- |
|
NL: check characters of string `string` are true predication of function `predicate` |
|
ref: all(predicate(x) for x in string) |
|
Output: all(x in string for x in list(string.items()) if x == 'isdit') |
|
bleu_metric: 16.27934873162478 |
|
---------- |
|
NL: determine number of files on a drive with python |
|
ref: os.statvfs('/').f_files - os.statvfs('/').f_ffree |
|
Output: os.stat(path).st_common(f.st_f) |
|
bleu_metric: 10.276795791404941 |
|
---------- |
|
NL: how to get a single result from a SQLite query in python? |
|
ref: cursor.fetchone()[0] |
|
Output: cursor.execute('SELECT * FROM foo WHERE bar = %s' % (f, data)) |
|
bleu_metric: 8.282282660969601 |
|
---------- |
|
NL: convert string `user_input` into a list of integers `user_list` |
|
ref: user_list = [int(number) for number in user_input.split(',')] |
|
Output: return int(soup.split(',')) |
|
bleu_metric: 34.34281712615472 |
|
---------- |
|
NL: Get a list of integers by splitting a string `user` with comma |
|
ref: [int(s) for s in user.split(',')] |
|
Output: [int(x) for x in (int(x)] for x in s.split('')] |
|
bleu_metric: 32.12854967972961 |
|
---------- |
|
NL: Sorting a Python list by two criteria |
|
ref: sorted(list, key=lambda x: (x[0], -x[1])) |
|
Output: sorted(list, key=lambda x: (x[1], x[0])) |
|
bleu_metric: 80.44410811781832 |
|
---------- |
|
NL: sort a list of objects `ut`, based on a function `cmpfun` in descending order |
|
ref: ut.sort(key=cmpfun, reverse=True) |
|
Output: sorted(a, key=lambda x: x.count(x.getter(1)) |
|
bleu_metric: 10.813005337959174 |
|
---------- |
|
NL: reverse list `ut` based on the `count` attribute of each object |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: sum(lst) |
|
bleu_metric: 2.867683507302 |
|
---------- |
|
NL: sort a list of objects `ut` in reverse order by their `count` property |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: sorted(L, key=lambda x: (-len(x.split('-))) |
|
bleu_metric: 25.0737833894674 |
|
---------- |
|
NL: click a href button 'Send' with selenium |
|
ref: driver.find_element_by_partial_link_text('Send').click() |
|
Output: browser.find_element_by_text('http://www.text.com') |
|
bleu_metric: 14.44788670919441 |
|
---------- |
|
NL: click a href button having text `Send InMail` with selenium |
|
ref: driver.findElement(By.linkText('Send InMail')).click() |
|
Output: browser.find_element_by_class_name('http://www.text.com') |
|
bleu_metric: 11.088142201985505 |
|
---------- |
|
NL: click a href button with text 'Send InMail' with selenium |
|
ref: driver.find_element_by_link_text('Send InMail').click() |
|
Output: browser.find_element_by_text('http://www.text.com') |
|
bleu_metric: 14.44788670919441 |
|
---------- |
|
NL: cast an int `i` to a string and concat to string 'ME' |
|
ref: 'ME' + str(i) |
|
Output: """""".join(i) |
|
bleu_metric: 31.61487584488943 |
|
---------- |
|
NL: Sorting data in DataFrame Pandas |
|
ref: df.sort_values(['System_num', 'Dis']) |
|
Output: df.sort_values(['System_num', 'Dis']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: prepend the line '#test firstline\n' to the contents of file 'infile' and save as the file 'outfile' |
|
ref: open('outfile', 'w').write('#test firstline\n' + open('infile').read()) |
|
Output: open('filename', 'w').write('\n').read().write('\n').write('\n') |
|
bleu_metric: 45.445331007629186 |
|
---------- |
|
NL: sort a list `l` by length of value in tuple |
|
ref: l.sort(key=lambda t: len(t[1]), reverse=True) |
|
Output: print(sorted(lst, key=lambda tup: len(x), len(y))) |
|
bleu_metric: 17.729842264695016 |
|
---------- |
|
NL: split string `s` by words that ends with 'd' |
|
ref: re.findall('\\b(\\w+)d\\b', s) |
|
Output: [word for word in s.split('.')[0] for s in s.split()] |
|
bleu_metric: 7.987276352377326 |
|
---------- |
|
NL: return `True` if string `foobarrrr` contains regex `ba[rzd]` |
|
ref: bool(re.search('ba[rzd]', 'foobarrrr')) |
|
Output: re.findall('(?<=\\d+', 'aaa') |
|
bleu_metric: 18.49304691034943 |
|
---------- |
|
NL: Removing duplicates in list `t` |
|
ref: list(set(t)) |
|
Output: list(set(item) for item in L)) |
|
bleu_metric: 35.556702356686955 |
|
---------- |
|
NL: Removing duplicates in list `source_list` |
|
ref: list(set(source_list)) |
|
Output: list(item) |
|
bleu_metric: 24.795364698947967 |
|
---------- |
|
NL: Removing duplicates in list `abracadabra` |
|
ref: list(OrderedDict.fromkeys('abracadabra')) |
|
Output: list(set(t)) |
|
bleu_metric: 19.745471508497758 |
|
---------- |
|
NL: Convert array `a` into a list |
|
ref: numpy.array(a).reshape(-1).tolist() |
|
Output: a.append(a) |
|
bleu_metric: 9.852859740626553 |
|
---------- |
|
NL: Convert the first row of numpy matrix `a` to a list |
|
ref: numpy.array(a)[0].tolist() |
|
Output: numpy.array(a, a[0]) |
|
bleu_metric: 44.579146390257485 |
|
---------- |
|
NL: In `soup`, get the content of the sibling of the `td` tag with text content `Address:` |
|
ref: print(soup.find(text='Address:').findNext('td').contents[0]) |
|
Output: soup.findAll(text='Python') |
|
bleu_metric: 11.86327327630691 |
|
---------- |
|
NL: convert elements of each tuple in list `l` into a string separated by character `@` |
|
ref: """ """.join([('%d@%d' % t) for t in l]) |
|
Output: """""".join(map(lambda x: x[1]) |
|
bleu_metric: 37.15744930678825 |
|
---------- |
|
NL: convert each tuple in list `l` to a string with '@' separating the tuples' elements |
|
ref: """ """.join([('%d@%d' % (t[0], t[1])) for t in l]) |
|
Output: [(x + y) for x, y in zip(l1, l2)] |
|
bleu_metric: 4.866055054993489 |
|
---------- |
|
NL: get the html from the current web page of a Selenium driver |
|
ref: driver.execute_script('return document.documentElement.outerHTML;') |
|
Output: driver.get('http://www.google.com') |
|
bleu_metric: 19.209534151258666 |
|
---------- |
|
NL: Get all matches with regex pattern `\\d+[xX]` in list of string `teststr` |
|
ref: [i for i in teststr if re.search('\\d+[xX]', i)] |
|
Output: [m.start() for m in re.findall('\\d+', 'abc test test test)] |
|
bleu_metric: 29.15471806136295 |
|
---------- |
|
NL: select values from column 'A' for which corresponding values in column 'B' will be greater than 50, and in column 'C' - equal 900 in dataframe `df` |
|
ref: df['A'][(df['B'] > 50) & (df['C'] == 900)] |
|
Output: df[['A', 'B']].fillna(df['A'] |
|
bleu_metric: 32.2826123723905 |
|
---------- |
|
NL: Sort dictionary `o` in ascending order based on its keys and items |
|
ref: sorted(o.items()) |
|
Output: sorted(list(d.items()), key=lambda x: x[1]) |
|
bleu_metric: 24.42195895839763 |
|
---------- |
|
NL: get sorted list of keys of dict `d` |
|
ref: sorted(d) |
|
Output: sorted(d, key=d.get) |
|
bleu_metric: 25.21193618434983 |
|
---------- |
|
NL: How to sort dictionaries by keys in Python |
|
ref: sorted(d.items()) |
|
Output: sorted(d.items()), key=lambda x: (x['name'], x['name'], x['name'])) |
|
bleu_metric: 21.62882016096312 |
|
---------- |
|
NL: convert string "1" into integer |
|
ref: int('1') |
|
Output: int('1', 2) |
|
bleu_metric: 58.143073696821936 |
|
---------- |
|
NL: function to convert strings into integers |
|
ref: int() |
|
Output: int(''.join(map(str, x))) |
|
bleu_metric: 12.729922658368398 |
|
---------- |
|
NL: convert items in `T1` to integers |
|
ref: T2 = [map(int, x) for x in T1] |
|
Output: int('1') |
|
bleu_metric: 7.448668213629092 |
|
---------- |
|
NL: call a shell script `./test.sh` using subprocess |
|
ref: subprocess.call(['./test.sh']) |
|
Output: subprocess.call('test.sh otherfunc') |
|
bleu_metric: 34.64490516910983 |
|
---------- |
|
NL: call a shell script `notepad` using subprocess |
|
ref: subprocess.call(['notepad']) |
|
Output: subprocess.call(['notepad']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: combine lists `l1` and `l2` by alternating their elements |
|
ref: [val for pair in zip(l1, l2) for val in pair] |
|
Output: [(x + y) for x, y in zip(l1, l2)] |
|
bleu_metric: 40.59264050928986 |
|
---------- |
|
NL: encode string 'data to be encoded' |
|
ref: encoded = base64.b64encode('data to be encoded') |
|
Output: data = json.encode('utf-8') |
|
bleu_metric: 21.665290989148364 |
|
---------- |
|
NL: encode a string `data to be encoded` to `ascii` encoding |
|
ref: encoded = 'data to be encoded'.encode('ascii') |
|
Output: data = 'data2' |
|
bleu_metric: 6.5298221612721505 |
|
---------- |
|
NL: parse tab-delimited CSV file 'text.txt' into a list |
|
ref: lol = list(csv.reader(open('text.txt', 'rb'), delimiter='\t')) |
|
Output: csv.writerow(open('filename.txt', 'r').read() |
|
bleu_metric: 26.04837362077714 |
|
---------- |
|
NL: Get attribute `my_str` of object `my_object` |
|
ref: getattr(my_object, my_str) |
|
Output: my_obj.get('id') |
|
bleu_metric: 19.96019880774733 |
|
---------- |
|
NL: group a list of dicts `LD` into one dict by key |
|
ref: print(dict(zip(LD[0], zip(*[list(d.values()) for d in LD])))) |
|
Output: dict(zip(d.items()) for d in L)} |
|
bleu_metric: 21.362647244490635 |
|
---------- |
|
NL: How do I sum the first value in each tuple in a list of tuples in Python? |
|
ref: sum([pair[0] for pair in list_of_pairs]) |
|
Output: sum(item[0] for item in mylist) |
|
bleu_metric: 32.21542689451684 |
|
---------- |
|
NL: convert unicode string u"{'code1':1,'code2':1}" into dictionary |
|
ref: d = ast.literal_eval("{'code1':1,'code2':1}") |
|
Output: {'MyString1': '1', '1'}).encode('ascii', 'ignore') |
|
bleu_metric: 14.294565332608489 |
|
---------- |
|
NL: find all words in a string `mystring` that start with the `$` sign |
|
ref: [word for word in mystring.split() if word.startswith('$')] |
|
Output: re.findall('\\[^\\w\\w', mystring) |
|
bleu_metric: 9.573479881751316 |
|
---------- |
|
NL: remove any url within string `text` |
|
ref: text = re.sub('^https?:\\/\\/.*[\\r\\n]*', '', text, flags=re.MULTILINE) |
|
Output: text = re.sub('\\r\\r\\r\\n*\\Z', '', text) |
|
bleu_metric: 39.07206775645457 |
|
---------- |
|
NL: replace all elements in array `A` that are not present in array `[1, 3, 4]` with zeros |
|
ref: np.where(np.in1d(A, [1, 3, 4]).reshape(A.shape), A, 0) |
|
Output: np.isnan(a).any(np.in1d(a), 0, a) |
|
bleu_metric: 20.39361671090609 |
|
---------- |
|
NL: calculate mean across dimension in a 2d array `a` |
|
ref: np.mean(a, axis=1) |
|
Output: np.mean(a, axis=1) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: running r script '/pathto/MyrScript.r' from python |
|
ref: subprocess.call(['/usr/bin/Rscript', '--vanilla', '/pathto/MyrScript.r']) |
|
Output: subprocess.call('path/to/test.py', shell=True) |
|
bleu_metric: 12.706804596574397 |
|
---------- |
|
NL: run r script '/usr/bin/Rscript --vanilla /pathto/MyrScript.r' |
|
ref: subprocess.call('/usr/bin/Rscript --vanilla /pathto/MyrScript.r', shell=True) |
|
Output: subprocess.call('/usr/bin/perl', shell=True) |
|
bleu_metric: 48.72501457287311 |
|
---------- |
|
NL: add a header to a csv file |
|
ref: writer.writeheader() |
|
Output: writer.writeheader() |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: replacing nan in the dataframe `df` with row average |
|
ref: df.fillna(df.mean(axis=1), axis=1) |
|
Output: df.fillna(df.mean(axis=1), axis=0) |
|
bleu_metric: 86.6397551781362 |
|
---------- |
|
NL: Convert unix timestamp '1347517370' to formatted string '%Y-%m-%d %H:%M:%S' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(1347517370)) |
|
Output: datetime.strptime('21/11/13 19:19:30 -0400', '%Y/%m/%Y |
|
bleu_metric: 11.771247290341437 |
|
---------- |
|
NL: Call a base class's class method `do` from derived class `Derived` |
|
ref: super(Derived, cls).do(a) |
|
Output: super(MyClass, self).__init__(*args, **kwargs) |
|
bleu_metric: 14.02577516008147 |
|
---------- |
|
NL: selecting rows in Numpy ndarray 'a', where the value in the first column is 0 and value in the second column is 1 |
|
ref: a[np.where((a[:, (0)] == 0) * (a[:, (1)] == 1))] |
|
Output: a[np.arange(a[0])!= 0] |
|
bleu_metric: 10.315793886636692 |
|
---------- |
|
NL: separate words delimited by one or more spaces into a list |
|
ref: re.split(' +', 'hello world sample text') |
|
Output: [word for word in my_list if any(x) not in '\n' % x.split()] |
|
bleu_metric: 10.332090908268508 |
|
---------- |
|
NL: length of longest element in list `words` |
|
ref: len(max(words, key=len)) |
|
Output: len(words, key=lambda i: len(word) for word in word_list) |
|
bleu_metric: 30.51327880362441 |
|
---------- |
|
NL: get the value associated with unicode key 'from_user' of first dictionary in list `result` |
|
ref: result[0]['from_user'] |
|
Output: [x for x in list_of_dict if x['success'] not in data] |
|
bleu_metric: 12.879862858915844 |
|
---------- |
|
NL: Retrieve each line from a file 'File.txt' as a list |
|
ref: [line.split() for line in open('File.txt')] |
|
Output: line = [line.strip() for line in open('filename.txt')] |
|
bleu_metric: 63.83964846132485 |
|
---------- |
|
NL: swap keys with values in a dictionary `a` |
|
ref: res = dict((v, k) for k, v in a.items()) |
|
Output: dict((v, k) for k, v in a.items()) |
|
bleu_metric: 90.00876262522594 |
|
---------- |
|
NL: Open a file `path/to/FILE_NAME.ext` in write mode |
|
ref: new_file = open('path/to/FILE_NAME.ext', 'w') |
|
Output: shutil.copyfile(path, '/to/file.txt') |
|
bleu_metric: 20.55825140665624 |
|
---------- |
|
NL: How to count distinct values in a column of a pandas group by object? |
|
ref: df.groupby(['col1', 'col2'])['col3'].nunique().reset_index() |
|
Output: df.groupby('A').agg(lambda x: x.nlargest(x.name).nunique()) |
|
bleu_metric: 24.81076483975817 |
|
---------- |
|
NL: Check if any key in the dictionary `dict1` starts with the string `EMP$$` |
|
ref: any(key.startswith('EMP$$') for key in dict1) |
|
Output: any(dict.values()) |
|
bleu_metric: 9.663861439684919 |
|
---------- |
|
NL: create list of values from dictionary `dict1` that have a key that starts with 'EMP$$' |
|
ref: [value for key, value in list(dict1.items()) if key.startswith('EMP$$')] |
|
Output: [key for key, value in list(d.items()) if 'new y' in d] |
|
bleu_metric: 43.11804919179004 |
|
---------- |
|
NL: convert a pandas series `sf` into a pandas dataframe `df` with columns `email` and `list` |
|
ref: pd.DataFrame({'email': sf.index, 'list': sf.values}) |
|
Output: pd.concat([df1, df2], axis=1) |
|
bleu_metric: 8.12657367724027 |
|
---------- |
|
NL: print elements of list `list` seperated by tabs `\t` |
|
ref: print('\t'.join(map(str, list))) |
|
Output: print(' '.join(map(list, list))) |
|
bleu_metric: 62.705622531832795 |
|
---------- |
|
NL: print unicode string '\xd0\xbf\xd1\x80\xd0\xb8' with utf-8 |
|
ref: print('\xd0\xbf\xd1\x80\xd0\xb8'.encode('raw_unicode_escape')) |
|
Output: print('\xd0\xd0\xd1\xd0\xd0\xd0\xd0\xd0\xd0\ |
|
bleu_metric: 32.278364081487986 |
|
---------- |
|
NL: Encode a latin character in string `Sopet\xc3\xb3n` properly |
|
ref: 'Sopet\xc3\xb3n'.encode('latin-1').decode('utf-8') |
|
Output: print('\xc3\xa9'.encode('utf-8')) |
|
bleu_metric: 40.96260380345688 |
|
---------- |
|
NL: resized image `image` to width, height of `(x, y)` with filter of `ANTIALIAS` |
|
ref: image = image.resize((x, y), Image.ANTIALIAS) |
|
Output: cv2.imshow(image, 0, cv2.COLOR_BGR2RGB) |
|
bleu_metric: 12.162636437767492 |
|
---------- |
|
NL: regex, find "n"s only in the middle of string `s` |
|
ref: re.findall('n(?<=[^n]n)n+(?=[^n])(?i)', s) |
|
Output: re.sub('(?<=n)', '', s) |
|
bleu_metric: 19.97638457636558 |
|
---------- |
|
NL: display the float `1/3*100` as a percentage |
|
ref: print('{0:.0f}%'.format(1.0 / 3 * 100)) |
|
Output: int(round(1.5)) |
|
bleu_metric: 8.651705771167139 |
|
---------- |
|
NL: sort a list of dictionary `mylist` by the key `title` |
|
ref: mylist.sort(key=lambda x: x['title']) |
|
Output: mylist.sort(key=lambda x: x['title']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: sort a list `l` of dicts by dict value 'title' |
|
ref: l.sort(key=lambda x: x['title']) |
|
Output: l.sort(key=lambda x: x['title']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: sort a list of dictionaries by the value of keys 'title', 'title_url', 'id' in ascending order. |
|
ref: l.sort(key=lambda x: (x['title'], x['title_url'], x['id'])) |
|
Output: my_list.sort(key=lambda x: x['title']) |
|
bleu_metric: 30.53233854712605 |
|
---------- |
|
NL: find 10 largest differences between each respective elements of list `l1` and list `l2` |
|
ref: heapq.nlargest(10, range(len(l1)), key=lambda i: abs(l1[i] - l2[i])) |
|
Output: print(max(x, key=sum)) |
|
bleu_metric: 5.1753387054451085 |
|
---------- |
|
NL: BeautifulSoup find all 'span' elements in HTML string `soup` with class of 'starGryB sp' |
|
ref: soup.find_all('span', {'class': 'starGryB sp'}) |
|
Output: soup.findAll('div', attrs={'name': 'description'}) |
|
bleu_metric: 27.858167198909346 |
|
---------- |
|
NL: write records in dataframe `df` to table 'test' in schema 'a_schema' |
|
ref: df.to_sql('test', engine, schema='a_schema') |
|
Output: df.to_csv('test.csv', index=False) |
|
bleu_metric: 20.519505687240557 |
|
---------- |
|
NL: Extract brackets from string `s` |
|
ref: brackets = re.sub('[^(){}[\\]]', '', s) |
|
Output: re.findall('\\[\\w\\]', s) |
|
bleu_metric: 28.25241115931726 |
|
---------- |
|
NL: remove duplicate elements from list 'L' |
|
ref: list(dict((x[0], x) for x in L).values()) |
|
Output: [set(x) for x in set(tuple(x) for x in L)] |
|
bleu_metric: 35.03419928300855 |
|
---------- |
|
NL: read a file `file` without newlines |
|
ref: [line.rstrip('\n') for line in file] |
|
Output: f.close() |
|
bleu_metric: 4.4408502586392995 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 9.025970847670083 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 9.025970847670083 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in [i for (i, x) in enumerate(testlist) if (x == 1)]: |
|
pass |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 7.3690983226275435 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in (i for (i, x) in enumerate(testlist) if (x == 1)): |
|
pass |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 8.372912227572577 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: gen = (i for (i, x) in enumerate(testlist) if (x == 1)) |
|
Output: print(list(range(1, len(mylist)) + 1) |
|
bleu_metric: 10.364607550945996 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: print(testlist.index(element)) |
|
Output: print(testlist.index(x)) |
|
bleu_metric: 70.16879391277371 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: gen = (i for (i, x) in enumerate(testlist) if (x == 1)) |
|
Output: print(testlist.index(x)) |
|
bleu_metric: 8.18227813664567 |
|
---------- |
|
NL: find the first element of the tuple with the maximum second element in a list of tuples `lis` |
|
ref: max(lis, key=lambda item: item[1])[0] |
|
Output: max(x[1] for x in L[0]) |
|
bleu_metric: 22.078697088920286 |
|
---------- |
|
NL: get the item at index 0 from the tuple that has maximum value at index 1 in list `lis` |
|
ref: max(lis, key=itemgetter(1))[0] |
|
Output: max(a, key=lambda x: x[1]) |
|
bleu_metric: 21.186050864016664 |
|
---------- |
|
NL: Make a delay of 1 second |
|
ref: time.sleep(1) |
|
Output: time.sleep(5) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: convert list of tuples `L` to a string |
|
ref: """, """.join('(' + ', '.join(i) + ')' for i in L) |
|
Output: """""".join(map(str, L)) |
|
bleu_metric: 22.382912241881993 |
|
---------- |
|
NL: Django set default value of field `b` equal to '0000000' |
|
ref: b = models.CharField(max_length=7, default='0000000', editable=False) |
|
Output: super(Model, self).save(*args, **kwargs) |
|
bleu_metric: 8.756189878973519 |
|
---------- |
|
NL: Sort lis `list5` in ascending order based on the degrees value of its elements |
|
ref: sorted(list5, lambda x: (degree(x), x)) |
|
Output: sorted(list(range(len(a))), key=lambda x: (-len(x)), x[1])) |
|
bleu_metric: 21.691223219717052 |
|
---------- |
|
NL: How do I perform secondary sorting in python? |
|
ref: sorted(list5, key=lambda vertex: (degree(vertex), vertex)) |
|
Output: sorted(list1, key=lambda x: x[:-1]) |
|
bleu_metric: 23.523340210589698 |
|
---------- |
|
NL: convert a list into a generator object |
|
ref: (n for n in [1, 2, 3, 5]) |
|
Output: [(i * i for i in range(10)) for i in range(10)] |
|
bleu_metric: 7.707532488755381 |
|
---------- |
|
NL: remove elements from list `oldlist` that have an index number mentioned in list `removelist` |
|
ref: newlist = [v for i, v in enumerate(oldlist) if i not in removelist] |
|
Output: [item for item in my_list if some_condition()] |
|
bleu_metric: 9.65619264674583 |
|
---------- |
|
NL: Open a file `yourfile.txt` in write mode |
|
ref: f = open('yourfile.txt', 'w') |
|
Output: f = open('file.txt', 'rU') |
|
bleu_metric: 57.3057404379869 |
|
---------- |
|
NL: get attribute 'attr' from object `obj` |
|
ref: getattr(obj, 'attr') |
|
Output: getattr(obj, 'attr') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to tuple |
|
ref: from functools import reduce |
|
reduce(lambda a, b: a + b, (('aa',), ('bb',), ('cc',))) |
|
Output: tuple(map(tuple, map(int, t)) |
|
bleu_metric: 3.3785986651715976 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to list in one line |
|
ref: map(lambda a: a[0], (('aa',), ('bb',), ('cc',))) |
|
Output: [('a', 'b', 'c'), ('d', 'e', 'e']) for e in l] |
|
bleu_metric: 15.687545978719285 |
|
---------- |
|
NL: Python Pandas: How to replace a characters in a column of a dataframe? |
|
ref: df['range'].replace(',', '-', inplace=True) |
|
Output: df.replace('-', inplace=True) |
|
bleu_metric: 43.27858737448645 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.24532394983186231 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.24532394983186231 |
|
---------- |
|
NL: unzip list `original` |
|
ref: result = ([a for (a, b) in original], [b for (a, b) in original]) |
|
Output: zip(*main_list) |
|
bleu_metric: 0.7985269443272172 |
|
---------- |
|
NL: unzip list `original` and return a generator |
|
ref: result = ((a for (a, b) in original), (b for (a, b) in original)) |
|
Output: [(i, j) for i in range(10)] |
|
bleu_metric: 5.292278815391249 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.07639466888110501 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` and fill empty results with None |
|
ref: map(None, *[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip(*a) |
|
bleu_metric: 0.037243160645090284 |
|
---------- |
|
NL: encode `Decimal('3.9')` to a JSON string |
|
ref: json.dumps(Decimal('3.9')) |
|
Output: json.dumps(str(x)) |
|
bleu_metric: 32.39454232489392 |
|
---------- |
|
NL: Add key "mynewkey" to dictionary `d` with value "mynewvalue" |
|
ref: d['mynewkey'] = 'mynewvalue' |
|
Output: d['mykey'] = {'mykey': 1}, {'section': 3}) |
|
bleu_metric: 14.908960803395837 |
|
---------- |
|
NL: Add key 'a' to dictionary `data` with value 1 |
|
ref: data.update({'a': 1, }) |
|
Output: data['a'] = 'b' |
|
bleu_metric: 17.86189637183548 |
|
---------- |
|
NL: Add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(dict(a=1)) |
|
Output: data['a'] = 'b' |
|
bleu_metric: 13.078474031415348 |
|
---------- |
|
NL: Add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(a=1) |
|
Output: data['a'] = 'b' |
|
bleu_metric: 14.323145079400494 |
|
---------- |
|
NL: find maximal value in matrix `matrix` |
|
ref: max([max(i) for i in matrix]) |
|
Output: max(max(x, key=lambda x: x[1])[0] |
|
bleu_metric: 12.58220555845937 |
|
---------- |
|
NL: Round number `answer` to 2 precision after the decimal point |
|
ref: answer = str(round(answer, 2)) |
|
Output: round(1.005, 2) |
|
bleu_metric: 24.5981275183433 |
|
---------- |
|
NL: extract ip address from an html string |
|
ref: ip = re.findall('[0-9]+(?:\\.[0-9]+){3}', s) |
|
Output: print(re.findall('\\d+(?=(\\.com+)\\.com/', s)) |
|
bleu_metric: 29.033332017734637 |
|
---------- |
|
NL: filter dataframe `df` by values in column `A` that appear more than once |
|
ref: df.groupby('A').filter(lambda x: len(x) > 1) |
|
Output: df[df['A'] > 1].filter(lambda x: x.isnull().values())] |
|
bleu_metric: 29.586757494947246 |
|
---------- |
|
NL: append each line in file `myfile` into a list |
|
ref: [x for x in myfile.splitlines() if x != ''] |
|
Output: myfile.write('myfile.txt', 'w').write('\n') |
|
bleu_metric: 8.899891914341412 |
|
---------- |
|
NL: Get a list of integers `lst` from a file `filename.txt` |
|
ref: lst = map(int, open('filename.txt').readlines()) |
|
Output: [int(i) for i in f.split(',')] |
|
bleu_metric: 12.313871716496207 |
|
---------- |
|
NL: add color bar with image `mappable` to plot `plt` |
|
ref: plt.colorbar(mappable=mappable, cax=ax3) |
|
Output: plt.savefig('test.png') |
|
bleu_metric: 16.449450056138957 |
|
---------- |
|
NL: count most frequent 100 words in column 'text' of dataframe `df` |
|
ref: Counter(' '.join(df['text']).split()).most_common(100) |
|
Output: df.join(word).most_common(word) |
|
bleu_metric: 14.732626148274333 |
|
---------- |
|
NL: Python split a string using regex |
|
ref: re.findall('(.+?):(.+?)\\b ?', text) |
|
Output: re.split('(?<=\\.\\d+|\\s)', text) |
|
bleu_metric: 27.16899549919204 |
|
---------- |
|
NL: generate all 2-element subsets of tuple `(1, 2, 3)` |
|
ref: list(itertools.combinations((1, 2, 3), 2)) |
|
Output: [list(itertools.product([1, 2, 3, 4], [4, 5, 6])) for a in range( |
|
bleu_metric: 23.605722704787006 |
|
---------- |
|
NL: get a value of datetime.today() in the UTC time zone |
|
ref: datetime.now(pytz.utc) |
|
Output: datetime.datetime.utcnow().date() |
|
bleu_metric: 18.70361278311548 |
|
---------- |
|
NL: Get a new list `list2`by removing empty list from a list of lists `list1` |
|
ref: list2 = [x for x in list1 if x != []] |
|
Output: list2 = [x for x in list1 if x!= []] |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Create `list2` to contain the lists from list `list1` excluding the empty lists from `list1` |
|
ref: list2 = [x for x in list1 if x] |
|
Output: list23 = [(a - b) for a, b in zip(list1, list2)] |
|
bleu_metric: 11.13613656101029 |
|
---------- |
|
NL: Django response with JSON `data` |
|
ref: return HttpResponse(data, mimetype='application/json') |
|
Output: json.dumps(data, ensure_data) |
|
bleu_metric: 16.66900658055424 |
|
---------- |
|
NL: get all text that is not enclosed within square brackets in string `example_str` |
|
ref: re.findall('(.*?)\\[.*?\\]', example_str) |
|
Output: """\\[\\]]""".split() |
|
bleu_metric: 16.91906599442455 |
|
---------- |
|
NL: Use a regex to get all text in a string `example_str` that is not surrounded by square brackets |
|
ref: re.findall('(.*?)(?:\\[.*?\\]|$)', example_str) |
|
Output: re.findall('\\[(.*?\\]\\]', '', str)) |
|
bleu_metric: 41.184938137508176 |
|
---------- |
|
NL: get whatever is between parentheses as a single match, and any char outside as an individual match in string '(zyx)bc' |
|
ref: re.findall('\\(.+?\\)|\\w', '(zyx)bc') |
|
Output: re.findall('\\w+(?:\\w+)', '\\1', s) |
|
bleu_metric: 38.05918723545142 |
|
---------- |
|
NL: match regex '\\((.*?)\\)|(\\w)' with string '(zyx)bc' |
|
ref: re.findall('\\((.*?)\\)|(\\w)', '(zyx)bc') |
|
Output: re.match('(?<=\\w+)', 'a\n b\n c') |
|
bleu_metric: 21.2203664532429 |
|
---------- |
|
NL: match multiple regex patterns with the alternation operator `|` in a string `(zyx)bc` |
|
ref: re.findall('\\(.*?\\)|\\w', '(zyx)bc') |
|
Output: re.findall('(?<=\\w)\\w', 'abcdefg123 and again abc') |
|
bleu_metric: 40.304968802021214 |
|
---------- |
|
NL: formate each string cin list `elements` into pattern '%{0}%' |
|
ref: elements = ['%{0}%'.format(element) for element in elements] |
|
Output: print(' '.join(map(str, list))) |
|
bleu_metric: 9.154148084605266 |
|
---------- |
|
NL: Open a background process 'background-process' with arguments 'arguments' |
|
ref: subprocess.Popen(['background-process', 'arguments']) |
|
Output: subprocess.Popen(['file', '-r', '-r', '-r', 'file.file']) |
|
bleu_metric: 28.631840575309536 |
|
---------- |
|
NL: get list of values from dictionary 'mydict' w.r.t. list of keys 'mykeys' |
|
ref: [mydict[x] for x in mykeys] |
|
Output: [k for d in mylist if'mykey' in d] |
|
bleu_metric: 14.807582680058125 |
|
---------- |
|
NL: convert list `[('Name', 'Joe'), ('Age', 22)]` into a dictionary |
|
ref: dict([('Name', 'Joe'), ('Age', 22)]) |
|
Output: dict(map(int, ['ip', 'at', '7', 'D']) |
|
bleu_metric: 17.760449184092803 |
|
---------- |
|
NL: average each two columns of array `data` |
|
ref: data.reshape(-1, j).mean(axis=1).reshape(data.shape[0], -1) |
|
Output: data.sum(axis=1).sum(axis=1) |
|
bleu_metric: 19.628836362845185 |
|
---------- |
|
NL: double backslash escape all double quotes in string `s` |
|
ref: print(s.encode('unicode-escape').replace('"', '\\"')) |
|
Output: result = result.replace('\\', '') |
|
bleu_metric: 23.514174149586935 |
|
---------- |
|
NL: split a string into a list of words and whitespace |
|
ref: re.split('(\\W+)', s) |
|
Output: [word for word in mystring.split()] |
|
bleu_metric: 15.620412264187214 |
|
---------- |
|
NL: plotting stacked barplots on a panda data frame |
|
ref: df.plot(kind='barh', stacked=True) |
|
Output: df.plot(kind='bar', stacked=True) |
|
bleu_metric: 81.53551038173114 |
|
---------- |
|
NL: reverse the keys and values in a dictionary `myDictionary` |
|
ref: {i[1]: i[0] for i in list(myDictionary.items())} |
|
Output: dict((v, k) for k, v in my_dict.items()) |
|
bleu_metric: 19.54411146921455 |
|
---------- |
|
NL: finding the index of elements containing substring 'how' and 'what' in a list of strings 'myList'. |
|
ref: [i for i, j in enumerate(myList) if 'how' in j.lower() or 'what' in j.lower()] |
|
Output: [x for x in mylist if 'abc' in x] |
|
bleu_metric: 4.965473926212578 |
|
---------- |
|
NL: check if object `obj` is a string |
|
ref: isinstance(obj, str) |
|
Output: isinstance(obj, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(a, str) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: (type(o) is str) |
|
Output: isinstance(a, str) |
|
bleu_metric: 23.813694985189848 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(a, str) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: check if `obj_to_test` is a string |
|
ref: isinstance(obj_to_test, str) |
|
Output: if (not some_string): |
|
pass |
|
bleu_metric: 20.556680845025983 |
|
---------- |
|
NL: append list `list1` to `list2` |
|
ref: list2.extend(list1) |
|
Output: list2.append(list2) |
|
bleu_metric: 32.17294420803808 |
|
---------- |
|
NL: append list `mylog` to `list1` |
|
ref: list1.extend(mylog) |
|
Output: mylist.append('myD') |
|
bleu_metric: 18.850319022747346 |
|
---------- |
|
NL: append list `a` to `c` |
|
ref: c.extend(a) |
|
Output: a.append(b) |
|
bleu_metric: 29.071536848410968 |
|
---------- |
|
NL: append items in list `mylog` to `list1` |
|
ref: for line in mylog: |
|
list1.append(line) |
|
Output: mylist.append('myD') |
|
bleu_metric: 22.84389301518129 |
|
---------- |
|
NL: append a tuple of elements from list `a` with indexes '[0][0] [0][2]' to list `b` |
|
ref: b.append((a[0][0], a[0][2])) |
|
Output: [(a, b, c) for a, b in zip(a, b)] |
|
bleu_metric: 9.850589025894903 |
|
---------- |
|
NL: Initialize `SECRET_KEY` in flask config with `Your_secret_string ` |
|
ref: app.config['SECRET_KEY'] = 'Your_secret_string' |
|
Output: app.config['your_key'] ='my_key_key' |
|
bleu_metric: 57.31224484094262 |
|
---------- |
|
NL: unpack a series of tuples in pandas into a DataFrame with column names 'out-1' and 'out-2' |
|
ref: pd.DataFrame(out.tolist(), columns=['out-1', 'out-2'], index=out.index) |
|
Output: pd.concat([df1, df2], axis=1) |
|
bleu_metric: 5.130188327095793 |
|
---------- |
|
NL: find the index of an element 'MSFT' in a list `stocks_list` |
|
ref: [x for x in range(len(stocks_list)) if stocks_list[x] == 'MSFT'] |
|
Output: sorted(list_to_index, key=lambda x: x[0].index(x_list) |
|
bleu_metric: 7.022279615553664 |
|
---------- |
|
NL: rotate the xtick labels of matplotlib plot `ax` by `45` degrees to make long labels readable |
|
ref: ax.set_xticklabels(labels, rotation=45) |
|
Output: ax.set_xlabel('Temperature (\u2103)') |
|
bleu_metric: 16.54461999338998 |
|
---------- |
|
NL: remove symbols from a string `s` |
|
ref: re.sub('[^\\w]', ' ', s) |
|
Output: re.sub('[^\\w]', '', s) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Get the current directory of a script |
|
ref: os.path.basename(os.path.dirname(os.path.realpath(__file__))) |
|
Output: os.path.dirname(os.path.abspath(__file__)) |
|
bleu_metric: 52.085526428001614 |
|
---------- |
|
NL: Find octal characters matches from a string `str` using regex |
|
ref: print(re.findall("'\\\\[0-7]{1,3}'", str)) |
|
Output: re.findall('[^\\w-\\d]', str) |
|
bleu_metric: 27.1936649292955 |
|
---------- |
|
NL: split string `input` based on occurrences of regex pattern '[ ](?=[A-Z]+\\b)' |
|
ref: re.split('[ ](?=[A-Z]+\\b)', input) |
|
Output: re.split('(?<=\\w+)', input) |
|
bleu_metric: 39.847572134903544 |
|
---------- |
|
NL: Split string `input` at every space followed by an upper-case letter |
|
ref: re.split('[ ](?=[A-Z])', input) |
|
Output: re.split('(?<=\\w)([A-Z])', input) |
|
bleu_metric: 59.75969817602503 |
|
---------- |
|
NL: send multipart encoded file `files` to url `url` with headers `headers` and metadata `data` |
|
ref: r = requests.post(url, files=files, headers=headers, data=data) |
|
Output: urllib.request.urlretrieve('http://www.com/go/') |
|
bleu_metric: 8.688932567491825 |
|
---------- |
|
NL: write bytes `bytes_` to a file `filename` in python 3 |
|
ref: open('filename', 'wb').write(bytes_) |
|
Output: f.write(open('filename.txt', 'wb') |
|
bleu_metric: 55.95642461260143 |
|
---------- |
|
NL: get a list from a list `lst` with values mapped into a dictionary `dct` |
|
ref: [dct[k] for k in lst] |
|
Output: print([y for x in lst if 'id' in l]) |
|
bleu_metric: 11.75029694362029 |
|
---------- |
|
NL: find duplicate names in column 'name' of the dataframe `x` |
|
ref: x.set_index('name').index.get_duplicates() |
|
Output: df.groupby('name')['name'].index |
|
bleu_metric: 34.899812526885086 |
|
---------- |
|
NL: truncate float 1.923328437452 to 3 decimal places |
|
ref: round(1.923328437452, 3) |
|
Output: '{0:.2f}'.format(13.95) |
|
bleu_metric: 10.802314890908066 |
|
---------- |
|
NL: sort list `li` in descending order based on the date value in second element of each list in list `li` |
|
ref: sorted(li, key=lambda x: datetime.strptime(x[1], '%d/%m/%Y'), reverse=True) |
|
Output: sorted(li, key=lambda x: order.index(x[2], x[2]]) |
|
bleu_metric: 30.17923315990544 |
|
---------- |
|
NL: place the radial ticks in plot `ax` at 135 degrees |
|
ref: ax.set_rlabel_position(135) |
|
Output: ax.set_xlabel('30') |
|
bleu_metric: 24.446151121745054 |
|
---------- |
|
NL: check if path `my_path` is an absolute path |
|
ref: os.path.isabs(my_path) |
|
Output: os.path.exists(my_path) |
|
bleu_metric: 65.80370064762462 |
|
---------- |
|
NL: get number of keys in dictionary `yourdict` |
|
ref: len(list(yourdict.keys())) |
|
Output: len(dict_dict[key] for key in dict_dict) |
|
bleu_metric: 17.194656088289214 |
|
---------- |
|
NL: count the number of keys in dictionary `yourdictfile` |
|
ref: len(set(open(yourdictfile).read().split())) |
|
Output: sum(1 for d in my_list if d.get('key', 1)]) |
|
bleu_metric: 9.449865252803164 |
|
---------- |
|
NL: pandas dataframe get first row of each group by 'id' |
|
ref: df.groupby('id').first() |
|
Output: df.groupby('id').first() |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: split a list in first column into multiple columns keeping other columns as well in pandas data frame |
|
ref: pd.concat([df[0].apply(pd.Series), df[1]], axis=1) |
|
Output: df.apply(lambda x: df.split(',')[1:-1]) |
|
bleu_metric: 13.32809869264623 |
|
---------- |
|
NL: extract attributes 'src="js/([^"]*\\bjquery\\b[^"]*)"' from string `data` |
|
ref: re.findall('src="js/([^"]*\\bjquery\\b[^"]*)"', data) |
|
Output: re.findall('[a-zA-Z][\\w-]*\\.\\S*\\S*[^a- |
|
bleu_metric: 22.84852347284557 |
|
---------- |
|
NL: Sum integers contained in strings in list `['', '3.4', '', '', '1.0']` |
|
ref: sum(int(float(item)) for item in [_f for _f in ['', '3.4', '', '', '1.0'] if _f]) |
|
Output: sum(map(int, ['1', '3', '2', '3']) |
|
bleu_metric: 15.327565138128369 |
|
---------- |
|
NL: Call a subprocess with arguments `c:\\Program Files\\VMware\\VMware Server\\vmware-cmd.bat` that may contain spaces |
|
ref: subprocess.Popen(['c:\\Program Files\\VMware\\VMware Server\\vmware-cmd.bat']) |
|
Output: subprocess.call('start /home/bin/bash -c "echo "echo "dev/subdir/* somedir/', shell |
|
bleu_metric: 6.784909540835388 |
|
---------- |
|
NL: reverse a priority queue `q` in python without using classes |
|
ref: q.put((-n, n)) |
|
Output: (::2 > 0).objects.filter(id=123)) |
|
bleu_metric: 13.78592993183041 |
|
---------- |
|
NL: make a barplot of data in column `group` of dataframe `df` colour-coded according to list `color` |
|
ref: df['group'].plot(kind='bar', color=['r', 'g', 'b', 'r', 'g', 'b', 'r']) |
|
Output: df.plot(x, y, 'B') |
|
bleu_metric: 1.7617020801492098 |
|
---------- |
|
NL: find all matches of regex pattern '([a-fA-F\\d]{32})' in string `data` |
|
ref: re.findall('([a-fA-F\\d]{32})', data) |
|
Output: print(re.findall('(?=(a.*?)\\b', '\\1', data)) |
|
bleu_metric: 29.06614574259767 |
|
---------- |
|
NL: Get the length of list `my_list` |
|
ref: len(my_list) |
|
Output: len(my_list) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Getting the length of array `l` |
|
ref: len(l) |
|
Output: len(l) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Getting the length of array `s` |
|
ref: len(s) |
|
Output: len(s) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Getting the length of `my_tuple` |
|
ref: len(my_tuple) |
|
Output: len(my_list) |
|
bleu_metric: 45.180100180492246 |
|
---------- |
|
NL: Getting the length of `my_string` |
|
ref: len(my_string) |
|
Output: len(my_string) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: remove escape character from string "\\a" |
|
ref: """\\a""".decode('string_escape') |
|
Output: print(' '.join(a) |
|
bleu_metric: 14.244775721428216 |
|
---------- |
|
NL: replace each 'a' with 'b' and each 'b' with 'a' in the string 'obama' in a single pass. |
|
ref: """obama""".replace('a', '%temp%').replace('b', 'a').replace('%temp%', 'b') |
|
Output: """a b""".replace('b', 'a', 'baz')) |
|
bleu_metric: 34.4125014551951 |
|
---------- |
|
NL: remove directory tree '/folder_name' |
|
ref: shutil.rmtree('/folder_name') |
|
Output: os.makedirs(path) |
|
bleu_metric: 18.094495256969623 |
|
---------- |
|
NL: create a new column `weekday` in pandas data frame `data` based on the values in column `my_dt` |
|
ref: data['weekday'] = data['my_dt'].apply(lambda x: x.weekday()) |
|
Output: data['hour'] = df['Date'].apply(lambda x: x.year)) |
|
bleu_metric: 54.038193355462695 |
|
---------- |
|
NL: reverse sort Counter `x` by values |
|
ref: sorted(x, key=x.get, reverse=True) |
|
Output: sorted(x, key=x.getter(x)) |
|
bleu_metric: 55.573034753918414 |
|
---------- |
|
NL: reverse sort counter `x` by value |
|
ref: sorted(list(x.items()), key=lambda pair: pair[1], reverse=True) |
|
Output: sorted(x, key=x.get) |
|
bleu_metric: 8.425741883707015 |
|
---------- |
|
NL: append a numpy array 'b' to a numpy array 'a' |
|
ref: np.vstack((a, b)) |
|
Output: a.reshape(a, -1, a1) |
|
bleu_metric: 23.901088824528134 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: print(concatenate((a, b), axis=0)) |
|
Output: print(a.shape[1, 3, 4]) |
|
bleu_metric: 15.325316503089068 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the second axis |
|
ref: print(concatenate((a, b), axis=1)) |
|
Output: print(concatenate((a, b), axis=1)) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: c = np.r_[(a[None, :], b[None, :])] |
|
Output: print(a.shape[1, 3, 4]) |
|
bleu_metric: 9.146501935450095 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: np.array((a, b)) |
|
Output: print(a.shape[1, 3, 4]) |
|
bleu_metric: 15.911783110981517 |
|
---------- |
|
NL: fetch address information for host 'google.com' ion port 80 |
|
ref: print(socket.getaddrinfo('google.com', 80)) |
|
Output: socket.send('HTTP/1.0 200 OK') |
|
bleu_metric: 15.850829785188195 |
|
---------- |
|
NL: add a column 'day' with value 'sat' to dataframe `df` |
|
ref: df.xs('sat', level='day', drop_level=False) |
|
Output: df['d'].apply(lambda x: 'Y')) |
|
bleu_metric: 11.454635531478054 |
|
---------- |
|
NL: return a 401 unauthorized in django |
|
ref: return HttpResponse('Unauthorized', status=401) |
|
Output: return HttpResponse(status=204) |
|
bleu_metric: 32.28559902619133 |
|
---------- |
|
NL: Flask set folder 'wherever' as the default template folder |
|
ref: Flask(__name__, template_folder='wherever') |
|
Output: app.path.join(__file__, os.abspath(__file__)) |
|
bleu_metric: 11.502783619900047 |
|
---------- |
|
NL: How do I INSERT INTO t1 (SELECT * FROM t2) in SQLAlchemy? |
|
ref: session.execute('INSERT INTO t1 (SELECT * FROM t2)') |
|
Output: session.commit() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: sort a list of lists 'c2' such that third row comes first |
|
ref: c2.sort(key=lambda row: row[2]) |
|
Output: sorted(lst, key=lambda x: x[2])) |
|
bleu_metric: 32.22538601891173 |
|
---------- |
|
NL: Sorting a list of lists in Python |
|
ref: c2.sort(key=lambda row: (row[2], row[1], row[0])) |
|
Output: [sorted(item) for item in data] |
|
bleu_metric: 3.9177831075306493 |
|
---------- |
|
NL: Sorting a list of lists in Python |
|
ref: c2.sort(key=lambda row: (row[2], row[1])) |
|
Output: [sorted(item) for item in data] |
|
bleu_metric: 5.9428726447571005 |
|
---------- |
|
NL: set font `Arial` to display non-ascii characters in matplotlib |
|
ref: matplotlib.rc('font', **{'sans-serif': 'Arial', 'family': 'sans-serif'}) |
|
Output: matplotlib.rcParams['font.update({'font.size': 'C','size'}) |
|
bleu_metric: 21.87310059835298 |
|
---------- |
|
NL: Convert DateTime column 'date' of pandas dataframe 'df' to ordinal |
|
ref: df['date'].apply(lambda x: x.toordinal()) |
|
Output: df['date'] = df['date'].dt.date.tolist() |
|
bleu_metric: 35.13874939965221 |
|
---------- |
|
NL: get html source of Selenium WebElement `element` |
|
ref: element.get_attribute('innerHTML') |
|
Output: driver.find_element_by_xpath("//*[contains(text(), 'text')]") |
|
bleu_metric: 12.173115521158184 |
|
---------- |
|
NL: Get the integer location of a key `bob` in a pandas data frame |
|
ref: df.index.get_loc('bob') |
|
Output: df.columns = df['state'].get_dict() |
|
bleu_metric: 15.76777026245066 |
|
---------- |
|
NL: open a 'gnome' terminal from python script and run 'sudo apt-get update' command. |
|
ref: os.system('gnome-terminal -e \'bash -c "sudo apt-get update; exec bash"\'') |
|
Output: os.system('start "$file"') |
|
bleu_metric: 14.726128825673209 |
|
---------- |
|
NL: add an item with key 'third_key' and value 1 to an dictionary `my_dict` |
|
ref: my_dict.update({'third_key': 1}) |
|
Output: default_dict.update({'key1': 1, 'position': 2}) |
|
bleu_metric: 35.95818888322724 |
|
---------- |
|
NL: declare an array |
|
ref: my_list = [] |
|
Output: intarray = array('i') |
|
bleu_metric: 15.619699684601276 |
|
---------- |
|
NL: Insert item `12` to a list `my_list` |
|
ref: my_list.append(12) |
|
Output: my_list.insert(0, k) |
|
bleu_metric: 24.446151121745054 |
|
---------- |
|
NL: add an entry 'wuggah' at the beginning of list `myList` |
|
ref: myList.insert(0, 'wuggah') |
|
Output: a.append(c) |
|
bleu_metric: 13.597602315271134 |
|
---------- |
|
NL: convert a hex-string representation to actual bytes |
|
ref: """\\xF3\\xBE\\x80\\x80""".replace('\\x', '').decode('hex') |
|
Output: binascii.unhexlify('\x00\x80')[2:] |
|
bleu_metric: 4.9663342844865035 |
|
---------- |
|
NL: select the last column of dataframe `df` |
|
ref: df[df.columns[-1]] |
|
Output: df.drop(df.columns[-1]] |
|
bleu_metric: 69.30977286178778 |
|
---------- |
|
NL: get the first value from dataframe `df` where column 'Letters' is equal to 'C' |
|
ref: df.loc[df['Letters'] == 'C', 'Letters'].values[0] |
|
Output: df[df['A'] == 'B'] |
|
bleu_metric: 25.294817005134707 |
|
---------- |
|
NL: converting two lists `[1, 2, 3]` and `[4, 5, 6]` into a matrix |
|
ref: np.column_stack(([1, 2, 3], [4, 5, 6])) |
|
Output: np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
bleu_metric: 53.858386640481605 |
|
---------- |
|
NL: get the type of `i` |
|
ref: type(i) |
|
Output: print(isinstance(a)) |
|
bleu_metric: 22.679164443904003 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get the type of variable `variable_name` |
|
ref: print(type(variable_name)) |
|
Output: print(get_name) |
|
bleu_metric: 24.795364698947967 |
|
---------- |
|
NL: get the 5th item of a generator |
|
ref: next(itertools.islice(range(10), 5, 5 + 1)) |
|
Output: next(it) |
|
bleu_metric: 2.7474047213893544 |
|
---------- |
|
NL: Print a string `word` with string format |
|
ref: print('"{}"'.format(word)) |
|
Output: print('Hello, {0}'.format(word)) |
|
bleu_metric: 59.978201631280236 |
|
---------- |
|
NL: join a list of strings `list` using a space ' ' |
|
ref: """ """.join(list) |
|
Output: [')','','','','','','','','','','','','','', ' |
|
bleu_metric: 5.987016463560546 |
|
---------- |
|
NL: create list `y` containing two empty lists |
|
ref: y = [[] for n in range(2)] |
|
Output: listy = [[] for i in range(3)] |
|
bleu_metric: 49.35578819979933 |
|
---------- |
|
NL: read a file 'C:/name/MyDocuments/numbers' into a list `data` |
|
ref: data = [line.strip() for line in open('C:/name/MyDocuments/numbers', 'r')] |
|
Output: data = [int(i) for i in f] |
|
bleu_metric: 6.360743006525592 |
|
---------- |
|
NL: delete all occurrences of character 'i' in string 'it is icy' |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: re.sub('i', '', 'I', 'it is icy') |
|
bleu_metric: 22.408895662889165 |
|
---------- |
|
NL: delete all instances of a character 'i' in a string 'it is icy' |
|
ref: re.sub('i', '', 'it is icy') |
|
Output: re.sub('i', '', 'it is icy') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: delete all characters "i" in string "it is icy" |
|
ref: """it is icy""".replace('i', '') |
|
Output: re.sub('[^i]', '', 'I', text) |
|
bleu_metric: 22.722445488928127 |
|
---------- |
|
NL: How to delete all instances of a character in a string in python? |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: """""".join([i for i in range(100) if i!= 'i']) |
|
bleu_metric: 59.20060650358378 |
|
---------- |
|
NL: Drop rows of pandas dataframe `df` having NaN in column at index "1" |
|
ref: df.dropna(subset=[1]) |
|
Output: df.drop(df.index[[1, 3]], inplace=True) |
|
bleu_metric: 12.91802583371725 |
|
---------- |
|
NL: get elements from list `myList`, that have a field `n` value 30 |
|
ref: [x for x in myList if x.n == 30] |
|
Output: myList = [i for i in range(10) if i % 2 == 0] |
|
bleu_metric: 12.58220555845937 |
|
---------- |
|
NL: converting list of strings `intstringlist` to list of integer `nums` |
|
ref: nums = [int(x) for x in intstringlist] |
|
Output: [int(x) for x in intstringlist] |
|
bleu_metric: 83.9234989944319 |
|
---------- |
|
NL: convert list of string numbers into list of integers |
|
ref: map(int, eval(input('Enter the unfriendly numbers: '))) |
|
Output: [int(i) for i in str_list] |
|
bleu_metric: 7.290792403968443 |
|
---------- |
|
NL: print "." without newline |
|
ref: sys.stdout.write('.') |
|
Output: print('\n'.join(str(x)) |
|
bleu_metric: 15.911783110981517 |
|
---------- |
|
NL: round off the float that is the product of `2.52 * 100` and convert it to an int |
|
ref: int(round(2.51 * 100)) |
|
Output: int(math.pack('100', struct.pack('100', int(2))) |
|
bleu_metric: 12.920725243713852 |
|
---------- |
|
NL: Find all files in directory "/mydir" with extension ".txt" |
|
ref: os.chdir('/mydir') |
|
for file in glob.glob('*.txt'): |
|
pass |
|
Output: for file in os.listdir('mydir') if os.endswith('.txt'): |
|
if file.end |
|
bleu_metric: 31.41808768186965 |
|
---------- |
|
NL: Find all files in directory "/mydir" with extension ".txt" |
|
ref: for file in os.listdir('/mydir'): |
|
if file.endswith('.txt'): |
|
pass |
|
Output: for file in os.listdir('mydir') if os.endswith('.txt'): |
|
if file.end |
|
bleu_metric: 74.59429832584496 |
|
---------- |
|
NL: Find all files in directory "/mydir" with extension ".txt" |
|
ref: for (root, dirs, files) in os.walk('/mydir'): |
|
for file in files: |
|
if file.endswith('.txt'): |
|
pass |
|
Output: for file in os.listdir('mydir') if os.endswith('.txt'): |
|
if file.end |
|
bleu_metric: 38.5828207641196 |
|
---------- |
|
NL: plot dataframe `df` without a legend |
|
ref: df.plot(legend=False) |
|
Output: plt.legend(loc=2, fontsize='y') |
|
bleu_metric: 13.380161378318956 |
|
---------- |
|
NL: loop through the IP address range "192.168.x.x" |
|
ref: for i in range(256): |
|
for j in range(256): |
|
ip = ('192.168.%d.%d' % (i, j)) |
|
print(ip) |
|
Output: for i in range(0, 10) |
|
bleu_metric: 2.18006837039135 |
|
---------- |
|
NL: loop through the IP address range "192.168.x.x" |
|
ref: for (i, j) in product(list(range(256)), list(range(256))): |
|
pass |
|
Output: for i in range(0, 10) |
|
bleu_metric: 3.8730052084654263 |
|
---------- |
|
NL: loop through the IP address range "192.168.x.x" |
|
ref: generator = iter_iprange('192.168.1.1', '192.168.255.255', step=1) |
|
Output: for i in range(0, 10) |
|
bleu_metric: 2.8194161881384923 |
|
---------- |
|
NL: Sum the corresponding decimal values for binary values of each boolean element in list `x` |
|
ref: sum(1 << i for i, b in enumerate(x) if b) |
|
Output: sum(map(int, x)) |
|
bleu_metric: 10.55672713033355 |
|
---------- |
|
NL: write multiple strings `line1`, `line2` and `line3` in one line in a file `target` |
|
ref: target.write('%r\n%r\n%r\n' % (line1, line2, line3)) |
|
Output: f.write('\n') |
|
bleu_metric: 8.523846965585486 |
|
---------- |
|
NL: Convert list of lists `data` into a flat list |
|
ref: [y for x in data for y in (x if isinstance(x, list) else [x])] |
|
Output: [item for sublist in l for item in sublist] |
|
bleu_metric: 6.735737120156013 |
|
---------- |
|
NL: Print new line character as `\n` in a string `foo\nbar` |
|
ref: print('foo\nbar'.encode('string_escape')) |
|
Output: 'Hello\n\n'.rstrip('\n') |
|
bleu_metric: 16.15322840648722 |
|
---------- |
|
NL: remove last comma character ',' in string `s` |
|
ref: """""".join(s.rsplit(',', 1)) |
|
Output: s = s.replace(',', '') |
|
bleu_metric: 24.4545047029932 |
|
---------- |
|
NL: calculate the mean of each element in array `x` with the element previous to it |
|
ref: (x[1:] + x[:-1]) / 2 |
|
Output: x = np.mean(a, axis=1) |
|
bleu_metric: 9.241605197022109 |
|
---------- |
|
NL: get an array of the mean of each two consecutive values in numpy array `x` |
|
ref: x[:-1] + (x[1:] - x[:-1]) / 2 |
|
Output: np.mean(np.arange(len(x)) + 3).mean(axis=1)) |
|
bleu_metric: 7.6047020452233385 |
|
---------- |
|
NL: load data containing `utf-8` from file `new.txt` into numpy array `arr` |
|
ref: arr = numpy.fromiter(codecs.open('new.txt', encoding='utf-8'), dtype='<U2') |
|
Output: data = numpy.loadtxt('file.txt', 'utf-8') |
|
bleu_metric: 25.88323054958255 |
|
---------- |
|
NL: reverse sort list of dicts `l` by value for key `time` |
|
ref: l = sorted(l, key=itemgetter('time'), reverse=True) |
|
Output: sorted(lst, key=lambda d: (d['time'], d['time'], d['time'], reverse=True |
|
bleu_metric: 17.7946690947194 |
|
---------- |
|
NL: Sort a list of dictionary `l` based on key `time` in descending order |
|
ref: l = sorted(l, key=lambda a: a['time'], reverse=True) |
|
Output: l = sorted(l, key=lambda x: (d['time'], reverse=True) |
|
bleu_metric: 76.97570474571566 |
|
---------- |
|
NL: get rows of dataframe `df` that match regex '(Hel|Just)' |
|
ref: df.loc[df[0].str.contains('(Hel|Just)')] |
|
Output: df[df.str.startswith('(?=.)', '|#')] |
|
bleu_metric: 29.906271972271124 |
|
---------- |
|
NL: find the string in `your_string` between two special characters "[" and "]" |
|
ref: re.search('\\[(.*)\\]', your_string).group(1) |
|
Output: re.search('(.*?)\\[^\\w\\s]', my_string) |
|
bleu_metric: 35.5402294764931 |
|
---------- |
|
NL: How to create a list of date string in 'yyyymmdd' format with Python Pandas? |
|
ref: [d.strftime('%Y%m%d') for d in pandas.date_range('20130226', '20130302')] |
|
Output: d = pd.DataFrame({'%Y': 'Y%m%d': 'Y%Y': 'Y%m%Y |
|
bleu_metric: 22.920768276757666 |
|
---------- |
|
NL: count number of times string 'brown' occurred in string 'The big brown fox is brown' |
|
ref: """The big brown fox is brown""".count('brown') |
|
Output: """ """.join(['Pplit', 'aaa']) |
|
bleu_metric: 31.276700211004304 |
|
---------- |
|
NL: decode json string `request.body` to python dict |
|
ref: json.loads(request.body) |
|
Output: json.loads(request.body) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: download the file from url `url` and save it under file `file_name` |
|
ref: urllib.request.urlretrieve(url, file_name) |
|
Output: file_name = open('file.txt', filename) |
|
bleu_metric: 15.53712569276035 |
|
---------- |
|
NL: split string `text` by space |
|
ref: text.split() |
|
Output: text = re.split('\\s+') |
|
bleu_metric: 20.333448190047886 |
|
---------- |
|
NL: split string `text` by "," |
|
ref: text.split(',') |
|
Output: text.split(',') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Split string `line` into a list by whitespace |
|
ref: line.split() |
|
Output: [line.strip() for line in open(' a')] |
|
bleu_metric: 11.794224053267104 |
|
---------- |
|
NL: replace dot characters '.' associated with ascii letters in list `s` with space ' ' |
|
ref: [re.sub('(?<!\\d)\\.(?!\\d)', ' ', i) for i in s] |
|
Output: re.sub('[^\\w-]','', s) |
|
bleu_metric: 18.60592450912929 |
|
---------- |
|
NL: sort list `list_of_strings` based on second index of each string `s` |
|
ref: sorted(list_of_strings, key=lambda s: s.split(',')[1]) |
|
Output: sorted(list_of_tuples, key=lambda s: s.split('_')[1])) |
|
bleu_metric: 70.64070210210579 |
|
---------- |
|
NL: call multiple bash function ‘vasp’ and ‘tee tee_output’ using ‘|’ |
|
ref: subprocess.check_call('vasp | tee tee_output', shell=True) |
|
Output: subprocess.call('start "$z', shell=True) |
|
bleu_metric: 48.80217780091719 |
|
---------- |
|
NL: eliminate all strings from list `lst` |
|
ref: [element for element in lst if isinstance(element, int)] |
|
Output: """""".join(lst) |
|
bleu_metric: 9.980554701686325 |
|
---------- |
|
NL: get all the elements except strings from the list 'lst'. |
|
ref: [element for element in lst if not isinstance(element, str)] |
|
Output: [x for x in lst if x[1] == 'C' in x] |
|
bleu_metric: 15.047149445189383 |
|
---------- |
|
NL: Sort a list of dictionaries `list_to_be_sorted` by the value of the dictionary key `name` |
|
ref: newlist = sorted(list_to_be_sorted, key=lambda k: k['name']) |
|
Output: sorted(list_of_dct, key=lambda k: k['name'])) |
|
bleu_metric: 73.36726069437738 |
|
---------- |
|
NL: sort a list of dictionaries `l` by values in key `name` in descending order |
|
ref: newlist = sorted(l, key=itemgetter('name'), reverse=True) |
|
Output: sorted(d, key=operator.itemgetter('name', 'age')) |
|
bleu_metric: 35.3774707378071 |
|
---------- |
|
NL: How do I sort a list of dictionaries by values of the dictionary in Python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('name')) |
|
Output: list.sort(key=operator.itemgetter('name', 'age')) |
|
bleu_metric: 69.91461503583824 |
|
---------- |
|
NL: How do I sort a list of dictionaries by values of the dictionary in Python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('age')) |
|
Output: list.sort(key=operator.itemgetter('name', 'age')) |
|
bleu_metric: 69.91461503583824 |
|
---------- |
|
NL: How to sort a Dataframe by the ocurrences in a column in Python (pandas) |
|
ref: df.groupby('prots').sum().sort('scores', ascending=False) |
|
Output: df.sort_values(['Peak', 'Weeks'], ascending=[True, True]) |
|
bleu_metric: 15.057522385331268 |
|
---------- |
|
NL: join together with "," elements inside a list indexed with 'category' within a dictionary `trans` |
|
ref: """,""".join(trans['category']) |
|
Output: [item['one'] for item in list_of_dicts] |
|
bleu_metric: 11.133037663423181 |
|
---------- |
|
NL: concatenate array of strings `['A', 'B', 'C', 'D']` into a string |
|
ref: """""".join(['A', 'B', 'C', 'D']) |
|
Output: """""".join(['a', 'b', 'c', 'd']) |
|
bleu_metric: 61.82527625446008 |
|
---------- |
|
NL: get json data from restful service 'url' |
|
ref: json.load(urllib.request.urlopen('url')) |
|
Output: print(json.dumps(url, data=data)) |
|
bleu_metric: 18.76960278961121 |
|
---------- |
|
NL: Remove all strings from a list a strings `sents` where the values starts with `@$\t` or `#` |
|
ref: [x for x in sents if not x.startswith('@$\t') and not x.startswith('#')] |
|
Output: [x for x in L if x.startswith('#')] |
|
bleu_metric: 36.8758127348874 |
|
---------- |
|
NL: django filter by hour |
|
ref: Entry.objects.filter(pub_date__contains='08:00') |
|
Output: Entry.objects.filter(created__year='2011', {'_date': '2011'}) |
|
bleu_metric: 30.05180557366462 |
|
---------- |
|
NL: sort a list of dictionary `list` first by key `points` and then by `time` |
|
ref: list.sort(key=lambda item: (item['points'], item['time'])) |
|
Output: list.sort(key=lambda x: x['time']) |
|
bleu_metric: 40.633530232106814 |
|
---------- |
|
NL: convert datetime object `(1970, 1, 1)` to seconds |
|
ref: (t - datetime.datetime(1970, 1, 1)).total_seconds() |
|
Output: datetime.datetime.now().strftime('%H:%M:%S') |
|
bleu_metric: 15.415064977510756 |
|
---------- |
|
NL: insert `_suff` before the file extension in `long.file.name.jpg` or replace `_a` with `suff` if it precedes the extension. |
|
ref: re.sub('(\\_a)?\\.([^\\.]*)$', '_suff.\\2', 'long.file.name.jpg') |
|
Output: os.path.splitext('/home/to/somefile.txt') |
|
bleu_metric: 3.7217110227905947 |
|
---------- |
|
NL: reload a module `module` |
|
ref: import imp |
|
imp.reload(module) |
|
Output: importlib.import_module('foo.b') |
|
bleu_metric: 17.03318603763928 |
|
---------- |
|
NL: Convert integer `number` into an unassigned integer |
|
ref: struct.unpack('H', struct.pack('h', number)) |
|
Output: int('1 + str(n)[-1] |
|
bleu_metric: 9.01224794878171 |
|
---------- |
|
NL: convert int values in list `numlist` to float |
|
ref: numlist = [float(x) for x in numlist] |
|
Output: float(map(int, ['1', '3'], ['0', '4']]) |
|
bleu_metric: 7.039774105336835 |
|
---------- |
|
NL: write dataframe `df`, excluding index, to a csv file |
|
ref: df.to_csv(filename, index=False) |
|
Output: df.to_csv(filename, index=False) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert a urllib unquoted string `unescaped` to a json data `json_data` |
|
ref: json_data = json.loads(unescaped) |
|
Output: json.dumps({'hi': 'foo'}) |
|
bleu_metric: 14.247788801610147 |
|
---------- |
|
NL: Create a list containing all ascii characters as its elements |
|
ref: [chr(i) for i in range(127)] |
|
Output: [int(x) for x in list('\u0420', '\u0420'] |
|
bleu_metric: 11.71291646655074 |
|
---------- |
|
NL: write `newFileBytes` to a binary file `newFile` |
|
ref: newFile.write(struct.pack('5B', *newFileBytes)) |
|
Output: f.write(struct.pack('i', 'rb') |
|
bleu_metric: 43.76982305624316 |
|
---------- |
|
NL: python regex - check for a capital letter with a following lowercase in string `string` |
|
ref: re.sub('^[A-Z0-9]*(?![a-z])', '', string) |
|
Output: re.sub('[^A-Z][\\w-]*', '', s) |
|
bleu_metric: 31.75248595372921 |
|
---------- |
|
NL: get the last key of dictionary `dict` |
|
ref: list(dict.keys())[-1] |
|
Output: max(dict.keys()) |
|
bleu_metric: 50.17507694885614 |
|
---------- |
|
NL: write line "hi there" to file `f` |
|
ref: print('hi there', file=f) |
|
Output: f.write('hi there\n') |
|
bleu_metric: 35.41698766144061 |
|
---------- |
|
NL: write line "hi there" to file `myfile` |
|
ref: f = open('myfile', 'w') |
|
f.write('hi there\n') |
|
Output: print('myfile.txt', open('myfile.txt')) |
|
bleu_metric: 20.889533351386476 |
|
---------- |
|
NL: write line "Hello" to file `somefile.txt` |
|
ref: with open('somefile.txt', 'a') as the_file: |
|
the_file.write('Hello\n') |
|
Output: file.write('foo\n') |
|
bleu_metric: 14.805399561478843 |
|
---------- |
|
NL: convert unicode string `s` to ascii |
|
ref: s.encode('iso-8859-15') |
|
Output: s.decode('ascii', 'ignore') |
|
bleu_metric: 24.022110864391532 |
|
---------- |
|
NL: Django get maximum value associated with field 'added' in model `AuthorizedEmail` |
|
ref: AuthorizedEmail.objects.filter(group=group).order_by('-added')[0] |
|
Output: MyModel.objects.filter(userprofile__pk=['title', 'title']) |
|
bleu_metric: 23.364722604693753 |
|
---------- |
|
NL: Find all numbers and dots from a string `text` using regex |
|
ref: re.findall('Test([0-9.]*[0-9]+)', text) |
|
Output: re.findall('\\d+', '', re.findall('\\d+', s)) |
|
bleu_metric: 20.563241139732103 |
|
---------- |
|
NL: python regex to find all numbers and dots from 'text' |
|
ref: re.findall('Test([\\d.]*\\d+)', text) |
|
Output: re.findall('\\d+', s) |
|
bleu_metric: 27.703746325324747 |
|
---------- |
|
NL: execute script 'script.ps1' using 'powershell.exe' shell |
|
ref: os.system('powershell.exe', 'script.ps1') |
|
Output: subprocess.call('start "$file.py', shell=True) |
|
bleu_metric: 14.400124446705304 |
|
---------- |
|
NL: Sort a list of tuples `b` by third item in the tuple |
|
ref: b.sort(key=lambda x: x[1][2]) |
|
Output: sorted(a, key=lambda x: (sum(x[1], x[0])) |
|
bleu_metric: 32.99895472527792 |
|
---------- |
|
NL: get a list of all keys in Cassandra database `cf` with pycassa |
|
ref: list(cf.get_range().get_keys()) |
|
Output: ndndndndndndndndndndndndndndndndndndndndndndndndndndndndndndndnd |
|
bleu_metric: 0.000516664614247128 |
|
---------- |
|
NL: create a datetime with the current date & time |
|
ref: datetime.datetime.now() |
|
Output: datetime.datetime.now().isoformat() |
|
bleu_metric: 61.90429960963545 |
|
---------- |
|
NL: get the index of an integer `1` from a list `lst` if the list also contains boolean items |
|
ref: next(i for i, x in enumerate(lst) if not isinstance(x, bool) and x == 1) |
|
Output: [i for i, x in enumerate(lst) if x == 0] |
|
bleu_metric: 42.57822397135907 |
|
---------- |
|
NL: subtract 13 from every number in a list `a` |
|
ref: a[:] = [(x - 13) for x in a] |
|
Output: [(x - x) for x in a] |
|
bleu_metric: 51.44168902788183 |
|
---------- |
|
NL: choose a random file from the directory contents of the C drive, `C:\\` |
|
ref: random.choice(os.listdir('C:\\')) |
|
Output: os.stat(os.path.join(dir, '..')) |
|
bleu_metric: 25.958657290343435 |
|
---------- |
|
NL: get the highest element in absolute value in a numpy matrix `x` |
|
ref: max(x.min(), x.max(), key=abs) |
|
Output: max(x.max(), x.max()) |
|
bleu_metric: 56.52866525800724 |
|
---------- |
|
NL: Get all urls within text `s` |
|
ref: re.findall('"(http.*?)"', s, re.MULTILINE | re.DOTALL) |
|
Output: re.findall('\\b(?=.)', s) |
|
bleu_metric: 24.628487110705017 |
|
---------- |
|
NL: match urls whose domain doesn't start with `t` from string `document` using regex |
|
ref: re.findall('http://[^t][^s"]+\\.html', document) |
|
Output: re.compile('^[^a-zA-Z0-9-]*\\.\\.com/', my_string |
|
bleu_metric: 12.913533075470381 |
|
---------- |
|
NL: split a string `mystring` considering the spaces ' ' |
|
ref: mystring.replace(' ', '! !').split('!') |
|
Output: re.split('\\s+', myString) |
|
bleu_metric: 21.02813554778581 |
|
---------- |
|
NL: open file `path` with mode 'r' |
|
ref: open(path, 'r') |
|
Output: os.path.join(path) |
|
bleu_metric: 23.356898886410004 |
|
---------- |
|
NL: sum elements at the same index in list `data` |
|
ref: [[sum(item) for item in zip(*items)] for items in zip(*data)] |
|
Output: [sum(i) for i in zip(*data)] |
|
bleu_metric: 33.38084565798161 |
|
---------- |
|
NL: add a new axis to array `a` |
|
ref: a[:, (np.newaxis)] |
|
Output: ax.set_zlabel('a') |
|
bleu_metric: 14.873743701255318 |
|
---------- |
|
|