Aitrepreneur commited on
Commit
07c2897
1 Parent(s): cb644d5

Added Ollama API support

Browse files
Files changed (1) hide show
  1. app.py +116 -56
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import gradio as gr
2
  import random
 
3
  import json
4
  import os
5
  import re
@@ -330,19 +331,21 @@ class PromptGenerator:
330
  return f"{prompt}, {caption}"
331
  return prompt
332
 
333
- class GroqInferenceNode:
334
  def __init__(self):
335
  #ADD YOUR OWN GROQ API KEY HERE
336
- self.client = Groq(api_key="YOUR-API-KEY")
337
- self.models = {
 
338
  "Llama 3.1 70B": "llama-3.1-70b-versatile",
339
  "Llama 3.1 8B": "llama-3.1-8b-instant"
340
  }
 
341
  self.prompts_dir = "./prompts"
342
  os.makedirs(self.prompts_dir, exist_ok=True)
343
 
344
  def save_prompt(self, prompt):
345
- filename_text = "groq_" + prompt.split(',')[0].strip()
346
  filename_text = re.sub(r'[^\w\-_\. ]', '_', filename_text)
347
  filename_text = filename_text[:30]
348
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
@@ -354,15 +357,72 @@ class GroqInferenceNode:
354
 
355
  print(f"Prompt saved to {filename}")
356
 
357
- def generate(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
358
  try:
359
- model_id = self.models.get(model, "llama-3.1-8b-instant")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360
 
361
- default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene, including details about the film grain, color grading, and any artifacts or characteristics specific."""
 
362
 
363
- default_simple_prompt = """Create a brief, straightforward caption for this description, suitable for a text-to-image AI system. Focus on the main elements, key characters, and overall scene without elaborate details. Provide a clear and concise description in one or two sentences."""
 
364
 
365
- poster_prompt = """Analyze the provided description and extract key information to create a movie poster style description. Format the output as follows:
 
 
366
  Title: A catchy, intriguing title that captures the essence of the scene, place the title in "".
367
  Main character: Give a description of the main character.
368
  Background: Describe the background in detail.
@@ -372,43 +432,26 @@ Tagline: Include a tagline that captures the essence of the movie.
372
  Visual style: Ensure that the visual style fits the branding type and tagline.
373
  You are allowed to make up film and branding names, and do them like 80's, 90's or modern movie posters."""
374
 
375
- if poster:
376
- base_prompt = poster_prompt
377
- elif custom_base_prompt.strip():
378
- base_prompt = custom_base_prompt
379
- else:
380
- base_prompt = default_happy_prompt if happy_talk else default_simple_prompt
381
-
382
- if compress and not poster:
383
- compression_chars = {
384
- "soft": 600 if happy_talk else 300,
385
- "medium": 400 if happy_talk else 200,
386
- "hard": 200 if happy_talk else 100
387
- }
388
- char_limit = compression_chars[compression_level]
389
- base_prompt += f" Compress the output to be concise while retaining key visual details. MAX OUTPUT SIZE no more than {char_limit} characters."
390
-
391
- messages = [
392
- {"role": "system", "content": "You are a helpful assistant. Try your best to give best response possible to user."},
393
- {"role": "user", "content": f"{base_prompt}\nDescription: {input_text}"}
394
- ]
395
-
396
- print(f"Starting generation with {model_id}...")
397
- start_time = time.time()
398
-
399
- chat_completion = self.client.chat.completions.create(
400
- messages=messages,
401
- model=model_id,
402
- max_tokens=4000,
403
- temperature=0.7,
404
- top_p=0.95
405
- )
406
 
407
- end_time = time.time()
408
- print(f"Generation completed in {end_time - start_time:.2f} seconds")
 
 
 
 
 
 
409
 
410
- output = chat_completion.choices[0].message.content
411
-
 
 
412
  # Clean up the output
413
  if ": " in output:
414
  output = output.split(": ", 1)[1].strip()
@@ -416,12 +459,10 @@ You are allowed to make up film and branding names, and do them like 80's, 90's
416
  sentences = output.split(". ")
417
  if len(sentences) > 1:
418
  output = ". ".join(sentences[1:]).strip()
419
-
420
  return output
421
-
422
  except Exception as e:
423
- print(f"An error occurred: {e}")
424
- return f"Error occurred while processing the request: {str(e)}"
425
 
426
  title = """<h1 align="center">FLUX Prompt Generator</h1>
427
  <p><center>
@@ -435,7 +476,7 @@ title = """<h1 align="center">FLUX Prompt Generator</h1>
435
 
436
  def create_interface():
437
  prompt_generator = PromptGenerator()
438
- groq_inference = GroqInferenceNode()
439
 
440
  with gr.Blocks(theme='bethecloud/storj_theme') as demo:
441
 
@@ -498,7 +539,9 @@ def create_interface():
498
 
499
  with gr.Column(scale=2):
500
  with gr.Accordion("Prompt Generation with LLM", open=False):
501
- model = gr.Dropdown(["Llama 3.1 70B", "Llama 3.1 8B"], label="Model", value="Llama 3.1 8B")
 
 
502
  happy_talk = gr.Checkbox(label="Happy Talk", value=True)
503
  compress = gr.Checkbox(label="Compress", value=True)
504
  compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
@@ -532,17 +575,35 @@ def create_interface():
532
  outputs=[output]
533
  )
534
 
535
- def generate_text_with_model(model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt):
536
- print(f"Generating text with model: {model}")
537
- output = groq_inference.generate(model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt)
 
 
 
 
 
 
 
 
 
538
  print("Generation completed.")
539
  return output
540
 
541
  generate_text_button.click(
542
  generate_text_with_model,
543
- inputs=[model, output, happy_talk, compress, compression_level, poster, custom_base_prompt],
544
  outputs=text_output
545
  )
 
 
 
 
 
 
 
 
 
546
 
547
  def update_all_options(choice):
548
  updates = {}
@@ -582,5 +643,4 @@ def create_interface():
582
  if __name__ == "__main__":
583
  print("FLUX Prompt Generator Initialized! HAVE FUN :)")
584
  demo = create_interface()
585
- demo.launch()
586
-
 
1
  import gradio as gr
2
  import random
3
+ import requests
4
  import json
5
  import os
6
  import re
 
331
  return f"{prompt}, {caption}"
332
  return prompt
333
 
334
+ class InferenceNode:
335
  def __init__(self):
336
  #ADD YOUR OWN GROQ API KEY HERE
337
+ self.groq_client = Groq(api_key="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")
338
+ self.groq_models = {
339
+ "Mixtral 8x7B": "mixtral-8x7b-32768",
340
  "Llama 3.1 70B": "llama-3.1-70b-versatile",
341
  "Llama 3.1 8B": "llama-3.1-8b-instant"
342
  }
343
+ self.ollama_url = "http://localhost:11434/api/generate"
344
  self.prompts_dir = "./prompts"
345
  os.makedirs(self.prompts_dir, exist_ok=True)
346
 
347
  def save_prompt(self, prompt):
348
+ filename_text = "inference_" + prompt.split(',')[0].strip()
349
  filename_text = re.sub(r'[^\w\-_\. ]', '_', filename_text)
350
  filename_text = filename_text[:30]
351
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
 
357
 
358
  print(f"Prompt saved to {filename}")
359
 
360
+ def generate(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt="", use_ollama=False):
361
  try:
362
+ if use_ollama:
363
+ return self.generate_ollama(model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt)
364
+ else:
365
+ return self.generate_groq(model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt)
366
+ except Exception as e:
367
+ print(f"An error occurred: {e}")
368
+ return f"Error occurred while processing the request: {str(e)}"
369
+
370
+ def generate_groq(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
371
+ model_id = self.groq_models.get(model, "llama-3.1-8b-instant")
372
+
373
+ base_prompt = self.get_base_prompt(happy_talk, compress, compression_level, poster, custom_base_prompt)
374
+
375
+ messages = [
376
+ {"role": "system", "content": "You are a helpful assistant. Try your best to give best response possible to user."},
377
+ {"role": "user", "content": f"{base_prompt}\nDescription: {input_text}"}
378
+ ]
379
+
380
+ print(f"Starting generation with Groq {model_id}...")
381
+ start_time = time.time()
382
+
383
+ chat_completion = self.groq_client.chat.completions.create(
384
+ messages=messages,
385
+ model=model_id,
386
+ max_tokens=4000,
387
+ temperature=0.7,
388
+ top_p=0.95
389
+ )
390
+
391
+ end_time = time.time()
392
+ print(f"Generation completed in {end_time - start_time:.2f} seconds")
393
+
394
+ output = chat_completion.choices[0].message.content
395
+ return self.clean_output(output)
396
+
397
+ def generate_ollama(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
398
+ base_prompt = self.get_base_prompt(happy_talk, compress, compression_level, poster, custom_base_prompt)
399
+
400
+ prompt = f"{base_prompt}\nDescription: {input_text}"
401
+
402
+ data = {
403
+ "model": model,
404
+ "prompt": prompt,
405
+ "stream": False
406
+ }
407
+
408
+ print(f"Starting generation with Ollama {model}...")
409
+ start_time = time.time()
410
+
411
+ response = requests.post(self.ollama_url, json=data)
412
+ response.raise_for_status()
413
+
414
+ end_time = time.time()
415
+ print(f"Generation completed in {end_time - start_time:.2f} seconds")
416
 
417
+ output = response.json()["response"]
418
+ return self.clean_output(output)
419
 
420
+ def get_base_prompt(self, happy_talk, compress, compression_level, poster, custom_base_prompt):
421
+ default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene, including details about the film grain, color grading, and any artifacts or characteristics specific."""
422
 
423
+ default_simple_prompt = """Create a brief, straightforward caption for this description, suitable for a text-to-image AI system. Focus on the main elements, key characters, and overall scene without elaborate details. Provide a clear and concise description in one or two sentences."""
424
+
425
+ poster_prompt = """Analyze the provided description and extract key information to create a movie poster style description. Format the output as follows:
426
  Title: A catchy, intriguing title that captures the essence of the scene, place the title in "".
427
  Main character: Give a description of the main character.
428
  Background: Describe the background in detail.
 
432
  Visual style: Ensure that the visual style fits the branding type and tagline.
433
  You are allowed to make up film and branding names, and do them like 80's, 90's or modern movie posters."""
434
 
435
+ if poster:
436
+ base_prompt = poster_prompt
437
+ elif custom_base_prompt.strip():
438
+ base_prompt = custom_base_prompt
439
+ else:
440
+ base_prompt = default_happy_prompt if happy_talk else default_simple_prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441
 
442
+ if compress and not poster:
443
+ compression_chars = {
444
+ "soft": 600 if happy_talk else 300,
445
+ "medium": 400 if happy_talk else 200,
446
+ "hard": 200 if happy_talk else 100
447
+ }
448
+ char_limit = compression_chars[compression_level]
449
+ base_prompt += f" Compress the output to be concise while retaining key visual details. MAX OUTPUT SIZE no more than {char_limit} characters."
450
 
451
+ return base_prompt
452
+
453
+ def clean_output(self, output):
454
+ try:
455
  # Clean up the output
456
  if ": " in output:
457
  output = output.split(": ", 1)[1].strip()
 
459
  sentences = output.split(". ")
460
  if len(sentences) > 1:
461
  output = ". ".join(sentences[1:]).strip()
 
462
  return output
 
463
  except Exception as e:
464
+ print(f"An error occurred while cleaning output: {e}")
465
+ return f"Error occurred while processing the output: {str(e)}"
466
 
467
  title = """<h1 align="center">FLUX Prompt Generator</h1>
468
  <p><center>
 
476
 
477
  def create_interface():
478
  prompt_generator = PromptGenerator()
479
+ inference_node = InferenceNode()
480
 
481
  with gr.Blocks(theme='bethecloud/storj_theme') as demo:
482
 
 
539
 
540
  with gr.Column(scale=2):
541
  with gr.Accordion("Prompt Generation with LLM", open=False):
542
+ use_ollama = gr.Checkbox(label="Use Ollama (local)", value=False)
543
+ model = gr.Dropdown(["Mixtral 8x7B", "Llama 3.1 70B", "Llama 3.1 8B"], label="Groq Model", value="Llama 3.1 8B")
544
+ ollama_model = gr.Textbox(label="Ollama Model Name", value="llama3", visible=False)
545
  happy_talk = gr.Checkbox(label="Happy Talk", value=True)
546
  compress = gr.Checkbox(label="Compress", value=True)
547
  compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
 
575
  outputs=[output]
576
  )
577
 
578
+ def generate_text_with_model(use_ollama, model, ollama_model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt):
579
+ print(f"Generating text with {'Ollama' if use_ollama else 'Groq'} model: {ollama_model if use_ollama else model}")
580
+ output = inference_node.generate(
581
+ ollama_model if use_ollama else model,
582
+ input_text,
583
+ happy_talk,
584
+ compress,
585
+ compression_level,
586
+ poster,
587
+ custom_base_prompt,
588
+ use_ollama
589
+ )
590
  print("Generation completed.")
591
  return output
592
 
593
  generate_text_button.click(
594
  generate_text_with_model,
595
+ inputs=[use_ollama, model, ollama_model, output, happy_talk, compress, compression_level, poster, custom_base_prompt],
596
  outputs=text_output
597
  )
598
+
599
+ def toggle_model_input(use_ollama):
600
+ return gr.update(visible=use_ollama), gr.update(visible=not use_ollama)
601
+
602
+ use_ollama.change(
603
+ toggle_model_input,
604
+ inputs=[use_ollama],
605
+ outputs=[ollama_model, model]
606
+ )
607
 
608
  def update_all_options(choice):
609
  updates = {}
 
643
  if __name__ == "__main__":
644
  print("FLUX Prompt Generator Initialized! HAVE FUN :)")
645
  demo = create_interface()
646
+ demo.launch()