|
import argparse |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download |
|
|
|
from depth_anything.blocks import FeatureFusionBlock, _make_scratch |
|
|
|
|
|
def _make_fusion_block(features, use_bn, size = None): |
|
return FeatureFusionBlock( |
|
features, |
|
nn.ReLU(False), |
|
deconv=False, |
|
bn=use_bn, |
|
expand=False, |
|
align_corners=True, |
|
size=size, |
|
) |
|
|
|
|
|
class DPTHead(nn.Module): |
|
def __init__(self, nclass, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False): |
|
super(DPTHead, self).__init__() |
|
|
|
self.nclass = nclass |
|
self.use_clstoken = use_clstoken |
|
|
|
self.projects = nn.ModuleList([ |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channel, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) for out_channel in out_channels |
|
]) |
|
|
|
self.resize_layers = nn.ModuleList([ |
|
nn.ConvTranspose2d( |
|
in_channels=out_channels[0], |
|
out_channels=out_channels[0], |
|
kernel_size=4, |
|
stride=4, |
|
padding=0), |
|
nn.ConvTranspose2d( |
|
in_channels=out_channels[1], |
|
out_channels=out_channels[1], |
|
kernel_size=2, |
|
stride=2, |
|
padding=0), |
|
nn.Identity(), |
|
nn.Conv2d( |
|
in_channels=out_channels[3], |
|
out_channels=out_channels[3], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
]) |
|
|
|
if use_clstoken: |
|
self.readout_projects = nn.ModuleList() |
|
for _ in range(len(self.projects)): |
|
self.readout_projects.append( |
|
nn.Sequential( |
|
nn.Linear(2 * in_channels, in_channels), |
|
nn.GELU())) |
|
|
|
self.scratch = _make_scratch( |
|
out_channels, |
|
features, |
|
groups=1, |
|
expand=False, |
|
) |
|
|
|
self.scratch.stem_transpose = None |
|
|
|
self.scratch.refinenet1 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet2 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet3 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet4 = _make_fusion_block(features, use_bn) |
|
|
|
head_features_1 = features |
|
head_features_2 = 32 |
|
|
|
if nclass > 1: |
|
self.scratch.output_conv = nn.Sequential( |
|
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(True), |
|
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0), |
|
) |
|
else: |
|
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) |
|
|
|
self.scratch.output_conv2 = nn.Sequential( |
|
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(True), |
|
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), |
|
nn.ReLU(True), |
|
nn.Identity(), |
|
) |
|
|
|
def forward(self, out_features, patch_h, patch_w): |
|
out = [] |
|
for i, x in enumerate(out_features): |
|
if self.use_clstoken: |
|
x, cls_token = x[0], x[1] |
|
readout = cls_token.unsqueeze(1).expand_as(x) |
|
x = self.readout_projects[i](torch.cat((x, readout), -1)) |
|
else: |
|
x = x[0] |
|
|
|
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) |
|
|
|
x = self.projects[i](x) |
|
x = self.resize_layers[i](x) |
|
|
|
out.append(x) |
|
|
|
layer_1, layer_2, layer_3, layer_4 = out |
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1) |
|
layer_2_rn = self.scratch.layer2_rn(layer_2) |
|
layer_3_rn = self.scratch.layer3_rn(layer_3) |
|
layer_4_rn = self.scratch.layer4_rn(layer_4) |
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) |
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) |
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) |
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) |
|
|
|
out = self.scratch.output_conv1(path_1) |
|
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) |
|
out = self.scratch.output_conv2(out) |
|
|
|
return out |
|
|
|
|
|
class DPT_DINOv2(nn.Module): |
|
def __init__(self, encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], use_bn=False, use_clstoken=False, localhub=True): |
|
super(DPT_DINOv2, self).__init__() |
|
|
|
assert encoder in ['vits', 'vitb', 'vitl'] |
|
|
|
|
|
if localhub: |
|
self.pretrained = torch.hub.load('torchhub/facebookresearch_dinov2_main', 'dinov2_{:}14'.format(encoder), source='local', pretrained=False) |
|
else: |
|
self.pretrained = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder)) |
|
|
|
dim = self.pretrained.blocks[0].attn.qkv.in_features |
|
|
|
self.depth_head = DPTHead(1, dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken) |
|
|
|
def forward(self, x): |
|
h, w = x.shape[-2:] |
|
|
|
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True) |
|
|
|
patch_h, patch_w = h // 14, w // 14 |
|
|
|
depth = self.depth_head(features, patch_h, patch_w) |
|
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True) |
|
depth = F.relu(depth) |
|
|
|
return depth.squeeze(1) |
|
|
|
|
|
class DepthAnything(DPT_DINOv2, PyTorchModelHubMixin): |
|
def __init__(self, config): |
|
super().__init__(**config) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--encoder", |
|
default="vits", |
|
type=str, |
|
choices=["vits", "vitb", "vitl"], |
|
) |
|
args = parser.parse_args() |
|
|
|
model = DepthAnything.from_pretrained("LiheYoung/depth_anything_{:}14".format(args.encoder)) |
|
|
|
print(model) |
|
|