Akil15 commited on
Commit
30c77ab
1 Parent(s): a47b85e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -176
README.md CHANGED
@@ -1,13 +1,18 @@
1
  ---
2
  library_name: peft
3
  base_model: google/gemma-2b
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
@@ -15,189 +20,41 @@ base_model: google/gemma-2b
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
 
 
 
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
 
 
 
 
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
 
200
 
 
 
 
 
201
 
202
  ### Framework versions
203
 
 
1
  ---
2
  library_name: peft
3
  base_model: google/gemma-2b
4
+ license: apache-2.0
5
+ datasets:
6
+ - b-mc2/sql-create-context
7
+ language:
8
+ - en
9
+ pipeline_tag: text-generation
10
  ---
11
 
12
  # Model Card for Model ID
13
 
14
  <!-- Provide a quick summary of what the model is/does. -->
15
+ This is an SFT-based (Supervised Fine-Tuned) Gemma-2B model for SQL-based tasks without applying flash-attention or using other methods libraries to reduce inference.
 
16
 
17
  ## Model Details
18
 
 
20
 
21
  <!-- Provide a longer summary of what this model is. -->
22
 
23
+ This is SFT based Fine-Tuned Gemma-2B model for SQL-based tasks by providing prompts to the model in the format given below(an Example):
24
+ """ Question: What is the average number of cows per farm with more than 100 acres of land?
25
+ Context: CREATE TABLE farm (Cows INTEGER, Acres INTEGER) """.
26
 
27
+ Formatting (Prompting) was applied to dataset to improve training loss over time during training as well reducing basic inference speed.
28
 
29
+ - Finetuned from model : "google/gemma-2b"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ ## Inference Code:
32
 
33
+ do the necessary imports then
34
 
35
+ device_map = {"": 0}
36
+ model_id = "google/gemma-2b"
37
+ new_model = "Akil15/Gemma_SQL_v.0.1"
38
 
39
+ # Reload model in FP16 and merge it with LoRA weights
40
+ base_model = AutoModelForCausalLM.from_pretrained(
41
+ model_id,
42
+ torch_dtype=torch.float16,
43
+ device_map=device_map,
44
+ )
45
 
46
+ model = PeftModel.from_pretrained(base_model, new_model)
47
+ model = model.merge_and_unload()
48
 
49
+ # Reload tokenizer to save it
50
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
51
+ tokenizer.pad_token = tokenizer.eos_token
52
+ tokenizer.padding_side = "right"
53
 
54
+ text = input()
55
+ inputs = tokenizer(text, return_tensors="pt").to(device)
56
+ outputs = model.generate(**inputs, max_new_tokens=20)
57
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
58
 
59
  ### Framework versions
60