File size: 23,338 Bytes
637a1b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
CONFIG
βββ data
β βββ _target_: matcha.data.text_mel_datamodule.TextMelDataModule
β name: ja005
β train_filelist_path: datas/ja005/train.cleaned.txt
β valid_filelist_path: datas/ja005/valid.cleaned.txt
β batch_size: 80
β num_workers: 1
β pin_memory: true
β cleaners:
β - basic_cleaners2
β add_blank: true
β n_spks: 1
β n_fft: 1024
β n_feats: 80
β sample_rate: 22050
β hop_length: 256
β win_length: 1024
β f_min: 0
β f_max: 8000
β data_statistics:
β mel_mean: -5.925878047943115
β mel_std: 2.230491876602173
β seed: 3000
β load_durations: false
β
βββ model
β βββ _target_: matcha.models.matcha_tts.MatchaTTS
β n_vocab: 178
β n_spks: 1
β spk_emb_dim: 64
β n_feats: 80
β data_statistics:
β mel_mean: -5.925878047943115
β mel_std: 2.230491876602173
β out_size: null
β prior_loss: true
β use_precomputed_durations: false
β encoder:
β encoder_type: RoPE Encoder
β encoder_params:
β n_feats: 80
β n_channels: 192
β filter_channels: 768
β filter_channels_dp: 256
β n_heads: 2
β n_layers: 6
β kernel_size: 3
β p_dropout: 0.1
β spk_emb_dim: 64
β n_spks: 1
β prenet: true
β duration_predictor_params:
β filter_channels_dp: 256
β kernel_size: 3
β p_dropout: 0.1
β decoder:
β channels:
β - 256
β - 256
β dropout: 0.05
β attention_head_dim: 64
β n_blocks: 1
β num_mid_blocks: 2
β num_heads: 2
β act_fn: snakebeta
β cfm:
β name: CFM
β solver: euler
β sigma_min: 0.0001
β optimizer:
β _target_: torch.optim.Adam
β _partial_: true
β lr: 0.0001
β weight_decay: 0.0
β
βββ callbacks
β βββ model_checkpoint:
β _target_: lightning.pytorch.callbacks.ModelCheckpoint
β dirpath: /notebooks/Matcha-TTS-Japanese/logs/train/ja005/runs/2024-09-19_03-24-56/checkpoints
β filename: checkpoint_{epoch:04d}
β monitor: epoch
β verbose: false
β save_last: true
β save_top_k: 25
β mode: max
β auto_insert_metric_name: true
β save_weights_only: false
β every_n_train_steps: null
β train_time_interval: null
β every_n_epochs: 25
β save_on_train_epoch_end: null
β model_summary:
β _target_: lightning.pytorch.callbacks.RichModelSummary
β max_depth: 3
β rich_progress_bar:
β _target_: lightning.pytorch.callbacks.RichProgressBar
β
βββ logger
β βββ tensorboard:
β _target_: lightning.pytorch.loggers.tensorboard.TensorBoardLogger
β save_dir: /notebooks/Matcha-TTS-Japanese/logs/train/ja005/runs/2024-09-19_03-24-56/tensorboard/
β name: null
β log_graph: false
β default_hp_metric: true
β prefix: ''
β
βββ trainer
β βββ _target_: lightning.pytorch.trainer.Trainer
β default_root_dir: /notebooks/Matcha-TTS-Japanese/logs/train/ja005/runs/2024-09-19_03-24-56
β max_epochs: -1
β accelerator: gpu
β devices:
β - 0
β precision: 16-mixed
β check_val_every_n_epoch: 1
β deterministic: false
β gradient_clip_val: 5.0
β
βββ paths
β βββ root_dir: /notebooks/Matcha-TTS-Japanese
β data_dir: /notebooks/Matcha-TTS-Japanese/data/
β log_dir: /notebooks/Matcha-TTS-Japanese/logs/
β output_dir: /notebooks/Matcha-TTS-Japanese/logs/train/ja005/runs/2024-09-19_03-24-56
β work_dir: /notebooks/Matcha-TTS-Japanese
β
βββ extras
β βββ ignore_warnings: false
β enforce_tags: true
β print_config: true
β
βββ task_name
β βββ train
βββ run_name
β βββ ja005
βββ tags
β βββ ['ja005']
βββ train
β βββ True
βββ test
β βββ True
βββ ckpt_path
β βββ datas/ja005/last.ckpt
βββ seed
βββ 1234
|