Akriel commited on
Commit
077a553
1 Parent(s): d99665a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1378.86 +/- 393.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d42eb7f52c6a14ff8b3558356e1d444a2448399e0a5b2e9474803d781deffe3
3
+ size 188022
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0af6e10b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0af6e10c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0af6e10ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0af6e10d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0af6e10dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0af6e10e50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0af6e10ee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0af6e10f70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0af6e13040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0af6e130d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0af6e13160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0af6e131f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0af6e8c600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ "log_std_init": -2,
25
+ "ortho_init": false
26
+ },
27
+ "observation_space": {
28
+ ":type:": "<class 'gym.spaces.box.Box'>",
29
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
30
+ "dtype": "float32",
31
+ "_shape": [
32
+ 28
33
+ ],
34
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
35
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
36
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
37
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
38
+ "_np_random": null
39
+ },
40
+ "action_space": {
41
+ ":type:": "<class 'gym.spaces.box.Box'>",
42
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
43
+ "dtype": "float32",
44
+ "_shape": [
45
+ 8
46
+ ],
47
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
48
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
49
+ "bounded_below": "[ True True True True True True True True]",
50
+ "bounded_above": "[ True True True True True True True True]",
51
+ "_np_random": null
52
+ },
53
+ "n_envs": 4,
54
+ "num_timesteps": 2000000,
55
+ "_total_timesteps": 2000000,
56
+ "_num_timesteps_at_start": 0,
57
+ "seed": null,
58
+ "action_noise": null,
59
+ "start_time": 1677601209114906436,
60
+ "learning_rate": 0.00096,
61
+ "tensorboard_log": null,
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
65
+ },
66
+ "_last_obs": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAjScb/0DTC+48MfP6Qvmb+QoLK+ew8gPn8YBDy4e4s/mL5vP8MYmLscd66+YlYNvaL47L4wvB7AFC05P9H7Xbzskzk+HRHPPn0dTr74FR07Siqav+jl6T03DkC/cFL1vOdWdj++svu/1FS1PvQdIz9GXm0/MPuSv7ujBT/O3whAnNhmvyoVVr+O+xQ/YGo+vyxbXz+7hI2/pznOP6PmyL9Ik3+/mP2aPgCvQL3j3lvAbjjCvqGCAb4ggSU/udjdPY4UHb40bJY/EDuSPiDueT8KBYW/vrL7v9RUtT7v4si/nyzsPpC9Dr8+xCY/Hc4qP/B8zD/mCEI+XHGcvrhld7/LiG8/NVRbvKJi7b7L7YO9z+TtPq7h9j5dyzg/twLePHVJKr4GhH8/8kP4Ppp8mb9BZ1S/FBnGvhmThT9ZJyW+CgWFvwowAj/UVLU+9B0jP2t3Vz91nR8+LLYHPwoIB0Dj4oo+wP51PqtiGL9twGy/5CFtPzZccb48MDg/NzY0PljwpL9WKYE9H34QP8smub/8tDg8fPWDv9Rn2r3VoQpAzDPKvgEQlD/Auy+/LHZMP+dWdj++svu/1FS1Pu/iyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
69
+ },
70
+ "_last_episode_starts": {
71
+ ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
73
+ },
74
+ "_last_original_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADTK482AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAov/WvQAAAAD9AO2/AAAAAOt2sz0AAAAA7kj5PwAAAAAuhuS7AAAAAPVo8D8AAAAAiQUUPAAAAAAzZ+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArS/ctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD0FOL0AAAAA8hrzvwAAAAAuhRc6AAAAAP9o6z8AAAAAQIG/vAAAAADTKe0/AAAAAEDxuD0AAAAATGv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSaqrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAEH188AAAAAMPa3r8AAAAAGtntvQAAAADoLvQ/AAAAABJk0r0AAAAAOqLnPwAAAAChBE28AAAAALso+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWpxQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc3GFvQAAAAALbfm/AAAAADfz8L0AAAAAMBvyPwAAAADwNZU9AAAAAJY16D8AAAAAK06TvQAAAACnUva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_episode_num": 0,
79
+ "use_sde": true,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": 0.0,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcdVjMFEAqMAWyUTegDjAF0lEdArMCjZ+QU6HV9lChoBkdAkrz251/2CmgHTegDaAhHQKzFBhm5Dqp1fZQoaAZHQJfeDDAJswdoB03oA2gIR0Csx5X36AOKdX2UKGgGR0CMznQD3dsSaAdN6ANoCEdArMpFlRP423V9lChoBkdAlJZqcZtNz2gHTegDaAhHQKzQT5YYBNp1fZQoaAZHQJWNwCYCyQhoB03oA2gIR0Cs1IY1pCa7dX2UKGgGR0CV748a4tpVaAdN6ANoCEdArNY+ctoSMHV9lChoBkdAlgjaBEroXGgHTegDaAhHQKzX7lOGj9J1fZQoaAZHQJQnfaXa8HxoB03oA2gIR0Cs3NCrtE5RdX2UKGgGR0CXBdMNMGoraAdN6ANoCEdArOEC6OHWSXV9lChoBkdAlIX4xtYSx2gHTegDaAhHQKzjPXYDklx1fZQoaAZHQJVjv3Cbc45oB03oA2gIR0Cs5cSIHkcTdX2UKGgGR0CUvo0k4WDZaAdN6ANoCEdArOxT7l7tzHV9lChoBkdAkqZbMLWqcWgHTegDaAhHQKzwpPWQOnV1fZQoaAZHQJefOMefZmJoB03oA2gIR0Cs8mY51eSkdX2UKGgGR0CT4LSvkiljaAdN6ANoCEdArPQWNm16V3V9lChoBkdAlen8N6PbPGgHTegDaAhHQKz45a4c3l11fZQoaAZHQJCIX7zkIX1oB03oA2gIR0Cs/QLS3LFGdX2UKGgGR0CVLoorFwT/aAdN6ANoCEdArP6+cBltj3V9lChoBkdAkZmZ8KG+K2gHTegDaAhHQK0BKKtPpIN1fZQoaAZHQJMEMp8WsRxoB03oA2gIR0CtCFWv8qFzdX2UKGgGR0CUN/NQCSzPaAdN6ANoCEdArQxwkcCHRHV9lChoBkdAlWav6O5rg2gHTegDaAhHQK0OJopx3mp1fZQoaAZHQJZXUoa1kUdoB03oA2gIR0CtD8xYRujzdX2UKGgGR0CVVHBV+7UYaAdN6ANoCEdArRSftrsSkHV9lChoBkdAlumkNBnjAGgHTegDaAhHQK0Yu43FUAF1fZQoaAZHQJbdUsYl6Z9oB03oA2gIR0CtGmtqQA+7dX2UKGgGR0CViLXzUZvUaAdN6ANoCEdArRxQR9PUKHV9lChoBkdAlc0Jf2K2rmgHTegDaAhHQK0jsTt9hJB1fZQoaAZHQJM1HC0ngHhoB03oA2gIR0CtKDDxTbWVdX2UKGgGR0COsk8s+V1PaAdN6ANoCEdArSnuAZsKs3V9lChoBkdAk3pDS5RTCWgHTegDaAhHQK0rn7NSqER1fZQoaAZHQJX+kI8hcJNoB03oA2gIR0CtMITHS4OMdX2UKGgGR0CWEPlO45LiaAdN6ANoCEdArTSy+tbLU3V9lChoBkdAlIGn7DVH4GgHTegDaAhHQK02bnA6+391fZQoaAZHQJaVLk0aZQZoB03oA2gIR0CtOCN8/lhgdX2UKGgGR0CVU6tEG7jDaAdN6ANoCEdArT9XnMdLhHV9lChoBkdAlZu+oxYaHmgHTegDaAhHQK1Ee/QjUut1fZQoaAZHQJdc0QZn+Q5oB03oA2gIR0CtRjoy0rsjdX2UKGgGR0CWjbWWhRIjaAdN6ANoCEdArUfme+VTrHV9lChoBkdAlPZd6LOzIGgHTegDaAhHQK1MpteD3/R1fZQoaAZHQJkyu+BYmsxoB03oA2gIR0CtUNSTyJ9BdX2UKGgGR0CXCYRgqmTDaAdN6ANoCEdArVKAQDmr83V9lChoBkdAlX96AnUlRmgHTegDaAhHQK1UMsq8UVV1fZQoaAZHQI8JFLFn7HhoB03oA2gIR0CtWq/3FkxzdX2UKGgGR0CZf45WRzRyaAdN6ANoCEdArWBk2NvOyHV9lChoBkdAl1G0vboKUmgHTegDaAhHQK1iKSK3uu11fZQoaAZHQJd766vq1PZoB03oA2gIR0CtY80YTCcgdX2UKGgGR0CYX46By0a7aAdN6ANoCEdArWil1GLDRHV9lChoBkdAlu91hoduHmgHTegDaAhHQK1s0yBTXJ51fZQoaAZHQJbtDLcKw6hoB03oA2gIR0CtbockD6nBdX2UKGgGR0CYzlJsO5J9aAdN6ANoCEdArXA7XQMQVnV9lChoBkdAmL4iFGoaUGgHTegDaAhHQK12KiD/VAl1fZQoaAZHQJjNuvyLAHpoB03oA2gIR0CtfGe0w8GLdX2UKGgGR0CZOqLRKHwgaAdN6ANoCEdArX4cZ5zHTHV9lChoBkdAmX8vIOpbU2gHTegDaAhHQK1/0pda+vh1fZQoaAZHQJak/h3qzJJoB03oA2gIR0CthLGp++dtdX2UKGgGR0CcDhzru6VdaAdN6ANoCEdArYjbR4QjEHV9lChoBkdAms89kWhysGgHTegDaAhHQK2KkGVzIWB1fZQoaAZHQJoEN47ihnJoB03oA2gIR0CtjD2FvhqCdX2UKGgGR0CU+wndfsu4aAdN6ANoCEdArZHKbF0gbXV9lChoBkdAlsoAvcrRSmgHTegDaAhHQK2YPyq+8Gt1fZQoaAZHQJSQtKbrkbRoB03oA2gIR0CtmhnWJ79idX2UKGgGR0CXO+AEt/WlaAdN6ANoCEdArZvJ2IO6NHV9lChoBkdAl2uPzz3AVWgHTegDaAhHQK2grcUuctp1fZQoaAZHQJms5t78ejpoB03oA2gIR0CtpOaNuLrHdX2UKGgGR0CYimT6zmfXaAdN6ANoCEdAraaqwljVhHV9lChoBkdAl8/T+R5kb2gHTegDaAhHQK2obuRcNYt1fZQoaAZHQJiZ7EtNBWxoB03oA2gIR0CtrclnAZbZdX2UKGgGR0CXT/pLVWjoaAdN6ANoCEdArbRUPJ7swHV9lChoBkdAmVcgF5fMOmgHTegDaAhHQK22m+X7cfx1fZQoaAZHQI1IQjKPn0VoB03oA2gIR0CtuGAy2x6fdX2UKGgGR0CUR5VmjCYUaAdN6ANoCEdArb1Kj1wo9nV9lChoBkdAlT4xbbDdg2gHTegDaAhHQK3Bk7Rv3rV1fZQoaAZHQJlZHKA8SwpoB03oA2gIR0Ctw06D5CWvdX2UKGgGR0CXjgYPXkHVaAdN6ANoCEdArcT9Lg4wRHV9lChoBkdAjQqgm7aqTGgHTegDaAhHQK3J6ur6tT11fZQoaAZHQJUGcnAqNIdoB03oA2gIR0Ct0FfoRqXXdX2UKGgGR0CWeoo11nuiaAdN6ANoCEdArdMEqYqoZXV9lChoBkdAfgtFt8/lhmgHTegDaAhHQK3Uuox59mZ1fZQoaAZHQJTCyIpH7P9oB03oA2gIR0Ct2Z7IkqtpdX2UKGgGR0CWZZBGx2SuaAdN6ANoCEdArd33q7iAD3V9lChoBkdAj3aCPp6hQGgHTegDaAhHQK3fuZH/cWV1fZQoaAZHQI+RjROUMXtoB03oA2gIR0Ct4W/rKNhmdX2UKGgGR0CLACxEfDDTaAdN6ANoCEdAreZki2UjcHV9lChoBkdAjSYsWGh24mgHTegDaAhHQK3sYJRfnfV1fZQoaAZHQI1YFMM7U5NoB03oA2gIR0Ct7wt+b3GodX2UKGgGR0CY/VpdrwfAaAdN6ANoCEdArfEQYzi0fHV9lChoBkdAltVDakAPu2gHTegDaAhHQK32DGnXNC91fZQoaAZHQJh08BGQSzxoB03oA2gIR0Ct+lOjZcs2dX2UKGgGR0CWhPgFHJ9zaAdN6ANoCEdArfwdIsiB5HV9lChoBkdAmMfGNNrTIGgHTegDaAhHQK392AU+LWJ1fZQoaAZHQJUnBxPwd81oB03oA2gIR0CuAsHJ1aGIdX2UKGgGR0CX9+Y+B6KMaAdN6ANoCEdArgiCMPz4DnV9lChoBkdAkgT8TWXkYGgHTegDaAhHQK4LP26ClJp1fZQoaAZHQJcVEnqmj0toB03oA2gIR0CuDaTspobodX2UKGgGR0CY3U/+85CGaAdN6ANoCEdArhKyWcBltnV9lChoBkdAkXuALZzxPWgHTegDaAhHQK4W8Vh1DBx1fZQoaAZHQJcfyMYMvytoB03oA2gIR0CuGLCA2AG0dX2UKGgGR0CbKkjLB9CvaAdN6ANoCEdArhprDO1OTXVlLg=="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 62500,
91
+ "n_steps": 8,
92
+ "gamma": 0.99,
93
+ "gae_lambda": 0.9,
94
+ "ent_coef": 0.0,
95
+ "vf_coef": 0.4,
96
+ "max_grad_norm": 0.5,
97
+ "normalize_advantage": false
98
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ddfd2b42c5ecc5a1149f08ac9d05c563c6aa8743241906543229efce022c23d
3
+ size 115440
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5453559d2ade3f23b992668f868e7f2b528b0ca834ccb2e3cfe1ff0d2f87d4fa
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0af6e10b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0af6e10c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0af6e10ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0af6e10d30>", "_build": "<function ActorCriticPolicy._build at 0x7f0af6e10dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0af6e10e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0af6e10ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0af6e10f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0af6e13040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0af6e130d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0af6e13160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0af6e131f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0af6e8c600>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -2, "ortho_init": false}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677601209114906436, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAjScb/0DTC+48MfP6Qvmb+QoLK+ew8gPn8YBDy4e4s/mL5vP8MYmLscd66+YlYNvaL47L4wvB7AFC05P9H7Xbzskzk+HRHPPn0dTr74FR07Siqav+jl6T03DkC/cFL1vOdWdj++svu/1FS1PvQdIz9GXm0/MPuSv7ujBT/O3whAnNhmvyoVVr+O+xQ/YGo+vyxbXz+7hI2/pznOP6PmyL9Ik3+/mP2aPgCvQL3j3lvAbjjCvqGCAb4ggSU/udjdPY4UHb40bJY/EDuSPiDueT8KBYW/vrL7v9RUtT7v4si/nyzsPpC9Dr8+xCY/Hc4qP/B8zD/mCEI+XHGcvrhld7/LiG8/NVRbvKJi7b7L7YO9z+TtPq7h9j5dyzg/twLePHVJKr4GhH8/8kP4Ppp8mb9BZ1S/FBnGvhmThT9ZJyW+CgWFvwowAj/UVLU+9B0jP2t3Vz91nR8+LLYHPwoIB0Dj4oo+wP51PqtiGL9twGy/5CFtPzZccb48MDg/NzY0PljwpL9WKYE9H34QP8smub/8tDg8fPWDv9Rn2r3VoQpAzDPKvgEQlD/Auy+/LHZMP+dWdj++svu/1FS1Pu/iyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADTK482AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAov/WvQAAAAD9AO2/AAAAAOt2sz0AAAAA7kj5PwAAAAAuhuS7AAAAAPVo8D8AAAAAiQUUPAAAAAAzZ+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArS/ctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD0FOL0AAAAA8hrzvwAAAAAuhRc6AAAAAP9o6z8AAAAAQIG/vAAAAADTKe0/AAAAAEDxuD0AAAAATGv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSaqrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAEH188AAAAAMPa3r8AAAAAGtntvQAAAADoLvQ/AAAAABJk0r0AAAAAOqLnPwAAAAChBE28AAAAALso+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWpxQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc3GFvQAAAAALbfm/AAAAADfz8L0AAAAAMBvyPwAAAADwNZU9AAAAAJY16D8AAAAAK06TvQAAAACnUva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcdVjMFEAqMAWyUTegDjAF0lEdArMCjZ+QU6HV9lChoBkdAkrz251/2CmgHTegDaAhHQKzFBhm5Dqp1fZQoaAZHQJfeDDAJswdoB03oA2gIR0Csx5X36AOKdX2UKGgGR0CMznQD3dsSaAdN6ANoCEdArMpFlRP423V9lChoBkdAlJZqcZtNz2gHTegDaAhHQKzQT5YYBNp1fZQoaAZHQJWNwCYCyQhoB03oA2gIR0Cs1IY1pCa7dX2UKGgGR0CV748a4tpVaAdN6ANoCEdArNY+ctoSMHV9lChoBkdAlgjaBEroXGgHTegDaAhHQKzX7lOGj9J1fZQoaAZHQJQnfaXa8HxoB03oA2gIR0Cs3NCrtE5RdX2UKGgGR0CXBdMNMGoraAdN6ANoCEdArOEC6OHWSXV9lChoBkdAlIX4xtYSx2gHTegDaAhHQKzjPXYDklx1fZQoaAZHQJVjv3Cbc45oB03oA2gIR0Cs5cSIHkcTdX2UKGgGR0CUvo0k4WDZaAdN6ANoCEdArOxT7l7tzHV9lChoBkdAkqZbMLWqcWgHTegDaAhHQKzwpPWQOnV1fZQoaAZHQJefOMefZmJoB03oA2gIR0Cs8mY51eSkdX2UKGgGR0CT4LSvkiljaAdN6ANoCEdArPQWNm16V3V9lChoBkdAlen8N6PbPGgHTegDaAhHQKz45a4c3l11fZQoaAZHQJCIX7zkIX1oB03oA2gIR0Cs/QLS3LFGdX2UKGgGR0CVLoorFwT/aAdN6ANoCEdArP6+cBltj3V9lChoBkdAkZmZ8KG+K2gHTegDaAhHQK0BKKtPpIN1fZQoaAZHQJMEMp8WsRxoB03oA2gIR0CtCFWv8qFzdX2UKGgGR0CUN/NQCSzPaAdN6ANoCEdArQxwkcCHRHV9lChoBkdAlWav6O5rg2gHTegDaAhHQK0OJopx3mp1fZQoaAZHQJZXUoa1kUdoB03oA2gIR0CtD8xYRujzdX2UKGgGR0CVVHBV+7UYaAdN6ANoCEdArRSftrsSkHV9lChoBkdAlumkNBnjAGgHTegDaAhHQK0Yu43FUAF1fZQoaAZHQJbdUsYl6Z9oB03oA2gIR0CtGmtqQA+7dX2UKGgGR0CViLXzUZvUaAdN6ANoCEdArRxQR9PUKHV9lChoBkdAlc0Jf2K2rmgHTegDaAhHQK0jsTt9hJB1fZQoaAZHQJM1HC0ngHhoB03oA2gIR0CtKDDxTbWVdX2UKGgGR0COsk8s+V1PaAdN6ANoCEdArSnuAZsKs3V9lChoBkdAk3pDS5RTCWgHTegDaAhHQK0rn7NSqER1fZQoaAZHQJX+kI8hcJNoB03oA2gIR0CtMITHS4OMdX2UKGgGR0CWEPlO45LiaAdN6ANoCEdArTSy+tbLU3V9lChoBkdAlIGn7DVH4GgHTegDaAhHQK02bnA6+391fZQoaAZHQJaVLk0aZQZoB03oA2gIR0CtOCN8/lhgdX2UKGgGR0CVU6tEG7jDaAdN6ANoCEdArT9XnMdLhHV9lChoBkdAlZu+oxYaHmgHTegDaAhHQK1Ee/QjUut1fZQoaAZHQJdc0QZn+Q5oB03oA2gIR0CtRjoy0rsjdX2UKGgGR0CWjbWWhRIjaAdN6ANoCEdArUfme+VTrHV9lChoBkdAlPZd6LOzIGgHTegDaAhHQK1MpteD3/R1fZQoaAZHQJkyu+BYmsxoB03oA2gIR0CtUNSTyJ9BdX2UKGgGR0CXCYRgqmTDaAdN6ANoCEdArVKAQDmr83V9lChoBkdAlX96AnUlRmgHTegDaAhHQK1UMsq8UVV1fZQoaAZHQI8JFLFn7HhoB03oA2gIR0CtWq/3FkxzdX2UKGgGR0CZf45WRzRyaAdN6ANoCEdArWBk2NvOyHV9lChoBkdAl1G0vboKUmgHTegDaAhHQK1iKSK3uu11fZQoaAZHQJd766vq1PZoB03oA2gIR0CtY80YTCcgdX2UKGgGR0CYX46By0a7aAdN6ANoCEdArWil1GLDRHV9lChoBkdAlu91hoduHmgHTegDaAhHQK1s0yBTXJ51fZQoaAZHQJbtDLcKw6hoB03oA2gIR0CtbockD6nBdX2UKGgGR0CYzlJsO5J9aAdN6ANoCEdArXA7XQMQVnV9lChoBkdAmL4iFGoaUGgHTegDaAhHQK12KiD/VAl1fZQoaAZHQJjNuvyLAHpoB03oA2gIR0CtfGe0w8GLdX2UKGgGR0CZOqLRKHwgaAdN6ANoCEdArX4cZ5zHTHV9lChoBkdAmX8vIOpbU2gHTegDaAhHQK1/0pda+vh1fZQoaAZHQJak/h3qzJJoB03oA2gIR0CthLGp++dtdX2UKGgGR0CcDhzru6VdaAdN6ANoCEdArYjbR4QjEHV9lChoBkdAms89kWhysGgHTegDaAhHQK2KkGVzIWB1fZQoaAZHQJoEN47ihnJoB03oA2gIR0CtjD2FvhqCdX2UKGgGR0CU+wndfsu4aAdN6ANoCEdArZHKbF0gbXV9lChoBkdAlsoAvcrRSmgHTegDaAhHQK2YPyq+8Gt1fZQoaAZHQJSQtKbrkbRoB03oA2gIR0CtmhnWJ79idX2UKGgGR0CXO+AEt/WlaAdN6ANoCEdArZvJ2IO6NHV9lChoBkdAl2uPzz3AVWgHTegDaAhHQK2grcUuctp1fZQoaAZHQJms5t78ejpoB03oA2gIR0CtpOaNuLrHdX2UKGgGR0CYimT6zmfXaAdN6ANoCEdAraaqwljVhHV9lChoBkdAl8/T+R5kb2gHTegDaAhHQK2obuRcNYt1fZQoaAZHQJiZ7EtNBWxoB03oA2gIR0CtrclnAZbZdX2UKGgGR0CXT/pLVWjoaAdN6ANoCEdArbRUPJ7swHV9lChoBkdAmVcgF5fMOmgHTegDaAhHQK22m+X7cfx1fZQoaAZHQI1IQjKPn0VoB03oA2gIR0CtuGAy2x6fdX2UKGgGR0CUR5VmjCYUaAdN6ANoCEdArb1Kj1wo9nV9lChoBkdAlT4xbbDdg2gHTegDaAhHQK3Bk7Rv3rV1fZQoaAZHQJlZHKA8SwpoB03oA2gIR0Ctw06D5CWvdX2UKGgGR0CXjgYPXkHVaAdN6ANoCEdArcT9Lg4wRHV9lChoBkdAjQqgm7aqTGgHTegDaAhHQK3J6ur6tT11fZQoaAZHQJUGcnAqNIdoB03oA2gIR0Ct0FfoRqXXdX2UKGgGR0CWeoo11nuiaAdN6ANoCEdArdMEqYqoZXV9lChoBkdAfgtFt8/lhmgHTegDaAhHQK3Uuox59mZ1fZQoaAZHQJTCyIpH7P9oB03oA2gIR0Ct2Z7IkqtpdX2UKGgGR0CWZZBGx2SuaAdN6ANoCEdArd33q7iAD3V9lChoBkdAj3aCPp6hQGgHTegDaAhHQK3fuZH/cWV1fZQoaAZHQI+RjROUMXtoB03oA2gIR0Ct4W/rKNhmdX2UKGgGR0CLACxEfDDTaAdN6ANoCEdAreZki2UjcHV9lChoBkdAjSYsWGh24mgHTegDaAhHQK3sYJRfnfV1fZQoaAZHQI1YFMM7U5NoB03oA2gIR0Ct7wt+b3GodX2UKGgGR0CY/VpdrwfAaAdN6ANoCEdArfEQYzi0fHV9lChoBkdAltVDakAPu2gHTegDaAhHQK32DGnXNC91fZQoaAZHQJh08BGQSzxoB03oA2gIR0Ct+lOjZcs2dX2UKGgGR0CWhPgFHJ9zaAdN6ANoCEdArfwdIsiB5HV9lChoBkdAmMfGNNrTIGgHTegDaAhHQK392AU+LWJ1fZQoaAZHQJUnBxPwd81oB03oA2gIR0CuAsHJ1aGIdX2UKGgGR0CX9+Y+B6KMaAdN6ANoCEdArgiCMPz4DnV9lChoBkdAkgT8TWXkYGgHTegDaAhHQK4LP26ClJp1fZQoaAZHQJcVEnqmj0toB03oA2gIR0CuDaTspobodX2UKGgGR0CY3U/+85CGaAdN6ANoCEdArhKyWcBltnV9lChoBkdAkXuALZzxPWgHTegDaAhHQK4W8Vh1DBx1fZQoaAZHQJcfyMYMvytoB03oA2gIR0CuGLCA2AG0dX2UKGgGR0CbKkjLB9CvaAdN6ANoCEdArhprDO1OTXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (846 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1378.8569407085074, "std_reward": 393.85539580457123, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T17:26:50.489272"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8462cca58243e764df92d5eaeb7808c74c8d042ab964160a9d193f7e9e39221
3
+ size 2136