Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +98 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1378.86 +/- 393.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d42eb7f52c6a14ff8b3558356e1d444a2448399e0a5b2e9474803d781deffe3
|
3 |
+
size 188022
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0af6e10b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0af6e10c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0af6e10ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0af6e10d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0af6e10dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0af6e10e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0af6e10ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0af6e10f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0af6e13040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0af6e130d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0af6e13160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0af6e131f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f0af6e8c600>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
"log_std_init": -2,
|
25 |
+
"ortho_init": false
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
29 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
30 |
+
"dtype": "float32",
|
31 |
+
"_shape": [
|
32 |
+
28
|
33 |
+
],
|
34 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
35 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
36 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
37 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
38 |
+
"_np_random": null
|
39 |
+
},
|
40 |
+
"action_space": {
|
41 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
42 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
43 |
+
"dtype": "float32",
|
44 |
+
"_shape": [
|
45 |
+
8
|
46 |
+
],
|
47 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
48 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
49 |
+
"bounded_below": "[ True True True True True True True True]",
|
50 |
+
"bounded_above": "[ True True True True True True True True]",
|
51 |
+
"_np_random": null
|
52 |
+
},
|
53 |
+
"n_envs": 4,
|
54 |
+
"num_timesteps": 2000000,
|
55 |
+
"_total_timesteps": 2000000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": null,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1677601209114906436,
|
60 |
+
"learning_rate": 0.00096,
|
61 |
+
"tensorboard_log": null,
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
65 |
+
},
|
66 |
+
"_last_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAjScb/0DTC+48MfP6Qvmb+QoLK+ew8gPn8YBDy4e4s/mL5vP8MYmLscd66+YlYNvaL47L4wvB7AFC05P9H7Xbzskzk+HRHPPn0dTr74FR07Siqav+jl6T03DkC/cFL1vOdWdj++svu/1FS1PvQdIz9GXm0/MPuSv7ujBT/O3whAnNhmvyoVVr+O+xQ/YGo+vyxbXz+7hI2/pznOP6PmyL9Ik3+/mP2aPgCvQL3j3lvAbjjCvqGCAb4ggSU/udjdPY4UHb40bJY/EDuSPiDueT8KBYW/vrL7v9RUtT7v4si/nyzsPpC9Dr8+xCY/Hc4qP/B8zD/mCEI+XHGcvrhld7/LiG8/NVRbvKJi7b7L7YO9z+TtPq7h9j5dyzg/twLePHVJKr4GhH8/8kP4Ppp8mb9BZ1S/FBnGvhmThT9ZJyW+CgWFvwowAj/UVLU+9B0jP2t3Vz91nR8+LLYHPwoIB0Dj4oo+wP51PqtiGL9twGy/5CFtPzZccb48MDg/NzY0PljwpL9WKYE9H34QP8smub/8tDg8fPWDv9Rn2r3VoQpAzDPKvgEQlD/Auy+/LHZMP+dWdj++svu/1FS1Pu/iyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
69 |
+
},
|
70 |
+
"_last_episode_starts": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
73 |
+
},
|
74 |
+
"_last_original_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADTK482AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAov/WvQAAAAD9AO2/AAAAAOt2sz0AAAAA7kj5PwAAAAAuhuS7AAAAAPVo8D8AAAAAiQUUPAAAAAAzZ+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArS/ctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD0FOL0AAAAA8hrzvwAAAAAuhRc6AAAAAP9o6z8AAAAAQIG/vAAAAADTKe0/AAAAAEDxuD0AAAAATGv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSaqrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAEH188AAAAAMPa3r8AAAAAGtntvQAAAADoLvQ/AAAAABJk0r0AAAAAOqLnPwAAAAChBE28AAAAALso+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWpxQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc3GFvQAAAAALbfm/AAAAADfz8L0AAAAAMBvyPwAAAADwNZU9AAAAAJY16D8AAAAAK06TvQAAAACnUva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_episode_num": 0,
|
79 |
+
"use_sde": true,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": 0.0,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcdVjMFEAqMAWyUTegDjAF0lEdArMCjZ+QU6HV9lChoBkdAkrz251/2CmgHTegDaAhHQKzFBhm5Dqp1fZQoaAZHQJfeDDAJswdoB03oA2gIR0Csx5X36AOKdX2UKGgGR0CMznQD3dsSaAdN6ANoCEdArMpFlRP423V9lChoBkdAlJZqcZtNz2gHTegDaAhHQKzQT5YYBNp1fZQoaAZHQJWNwCYCyQhoB03oA2gIR0Cs1IY1pCa7dX2UKGgGR0CV748a4tpVaAdN6ANoCEdArNY+ctoSMHV9lChoBkdAlgjaBEroXGgHTegDaAhHQKzX7lOGj9J1fZQoaAZHQJQnfaXa8HxoB03oA2gIR0Cs3NCrtE5RdX2UKGgGR0CXBdMNMGoraAdN6ANoCEdArOEC6OHWSXV9lChoBkdAlIX4xtYSx2gHTegDaAhHQKzjPXYDklx1fZQoaAZHQJVjv3Cbc45oB03oA2gIR0Cs5cSIHkcTdX2UKGgGR0CUvo0k4WDZaAdN6ANoCEdArOxT7l7tzHV9lChoBkdAkqZbMLWqcWgHTegDaAhHQKzwpPWQOnV1fZQoaAZHQJefOMefZmJoB03oA2gIR0Cs8mY51eSkdX2UKGgGR0CT4LSvkiljaAdN6ANoCEdArPQWNm16V3V9lChoBkdAlen8N6PbPGgHTegDaAhHQKz45a4c3l11fZQoaAZHQJCIX7zkIX1oB03oA2gIR0Cs/QLS3LFGdX2UKGgGR0CVLoorFwT/aAdN6ANoCEdArP6+cBltj3V9lChoBkdAkZmZ8KG+K2gHTegDaAhHQK0BKKtPpIN1fZQoaAZHQJMEMp8WsRxoB03oA2gIR0CtCFWv8qFzdX2UKGgGR0CUN/NQCSzPaAdN6ANoCEdArQxwkcCHRHV9lChoBkdAlWav6O5rg2gHTegDaAhHQK0OJopx3mp1fZQoaAZHQJZXUoa1kUdoB03oA2gIR0CtD8xYRujzdX2UKGgGR0CVVHBV+7UYaAdN6ANoCEdArRSftrsSkHV9lChoBkdAlumkNBnjAGgHTegDaAhHQK0Yu43FUAF1fZQoaAZHQJbdUsYl6Z9oB03oA2gIR0CtGmtqQA+7dX2UKGgGR0CViLXzUZvUaAdN6ANoCEdArRxQR9PUKHV9lChoBkdAlc0Jf2K2rmgHTegDaAhHQK0jsTt9hJB1fZQoaAZHQJM1HC0ngHhoB03oA2gIR0CtKDDxTbWVdX2UKGgGR0COsk8s+V1PaAdN6ANoCEdArSnuAZsKs3V9lChoBkdAk3pDS5RTCWgHTegDaAhHQK0rn7NSqER1fZQoaAZHQJX+kI8hcJNoB03oA2gIR0CtMITHS4OMdX2UKGgGR0CWEPlO45LiaAdN6ANoCEdArTSy+tbLU3V9lChoBkdAlIGn7DVH4GgHTegDaAhHQK02bnA6+391fZQoaAZHQJaVLk0aZQZoB03oA2gIR0CtOCN8/lhgdX2UKGgGR0CVU6tEG7jDaAdN6ANoCEdArT9XnMdLhHV9lChoBkdAlZu+oxYaHmgHTegDaAhHQK1Ee/QjUut1fZQoaAZHQJdc0QZn+Q5oB03oA2gIR0CtRjoy0rsjdX2UKGgGR0CWjbWWhRIjaAdN6ANoCEdArUfme+VTrHV9lChoBkdAlPZd6LOzIGgHTegDaAhHQK1MpteD3/R1fZQoaAZHQJkyu+BYmsxoB03oA2gIR0CtUNSTyJ9BdX2UKGgGR0CXCYRgqmTDaAdN6ANoCEdArVKAQDmr83V9lChoBkdAlX96AnUlRmgHTegDaAhHQK1UMsq8UVV1fZQoaAZHQI8JFLFn7HhoB03oA2gIR0CtWq/3FkxzdX2UKGgGR0CZf45WRzRyaAdN6ANoCEdArWBk2NvOyHV9lChoBkdAl1G0vboKUmgHTegDaAhHQK1iKSK3uu11fZQoaAZHQJd766vq1PZoB03oA2gIR0CtY80YTCcgdX2UKGgGR0CYX46By0a7aAdN6ANoCEdArWil1GLDRHV9lChoBkdAlu91hoduHmgHTegDaAhHQK1s0yBTXJ51fZQoaAZHQJbtDLcKw6hoB03oA2gIR0CtbockD6nBdX2UKGgGR0CYzlJsO5J9aAdN6ANoCEdArXA7XQMQVnV9lChoBkdAmL4iFGoaUGgHTegDaAhHQK12KiD/VAl1fZQoaAZHQJjNuvyLAHpoB03oA2gIR0CtfGe0w8GLdX2UKGgGR0CZOqLRKHwgaAdN6ANoCEdArX4cZ5zHTHV9lChoBkdAmX8vIOpbU2gHTegDaAhHQK1/0pda+vh1fZQoaAZHQJak/h3qzJJoB03oA2gIR0CthLGp++dtdX2UKGgGR0CcDhzru6VdaAdN6ANoCEdArYjbR4QjEHV9lChoBkdAms89kWhysGgHTegDaAhHQK2KkGVzIWB1fZQoaAZHQJoEN47ihnJoB03oA2gIR0CtjD2FvhqCdX2UKGgGR0CU+wndfsu4aAdN6ANoCEdArZHKbF0gbXV9lChoBkdAlsoAvcrRSmgHTegDaAhHQK2YPyq+8Gt1fZQoaAZHQJSQtKbrkbRoB03oA2gIR0CtmhnWJ79idX2UKGgGR0CXO+AEt/WlaAdN6ANoCEdArZvJ2IO6NHV9lChoBkdAl2uPzz3AVWgHTegDaAhHQK2grcUuctp1fZQoaAZHQJms5t78ejpoB03oA2gIR0CtpOaNuLrHdX2UKGgGR0CYimT6zmfXaAdN6ANoCEdAraaqwljVhHV9lChoBkdAl8/T+R5kb2gHTegDaAhHQK2obuRcNYt1fZQoaAZHQJiZ7EtNBWxoB03oA2gIR0CtrclnAZbZdX2UKGgGR0CXT/pLVWjoaAdN6ANoCEdArbRUPJ7swHV9lChoBkdAmVcgF5fMOmgHTegDaAhHQK22m+X7cfx1fZQoaAZHQI1IQjKPn0VoB03oA2gIR0CtuGAy2x6fdX2UKGgGR0CUR5VmjCYUaAdN6ANoCEdArb1Kj1wo9nV9lChoBkdAlT4xbbDdg2gHTegDaAhHQK3Bk7Rv3rV1fZQoaAZHQJlZHKA8SwpoB03oA2gIR0Ctw06D5CWvdX2UKGgGR0CXjgYPXkHVaAdN6ANoCEdArcT9Lg4wRHV9lChoBkdAjQqgm7aqTGgHTegDaAhHQK3J6ur6tT11fZQoaAZHQJUGcnAqNIdoB03oA2gIR0Ct0FfoRqXXdX2UKGgGR0CWeoo11nuiaAdN6ANoCEdArdMEqYqoZXV9lChoBkdAfgtFt8/lhmgHTegDaAhHQK3Uuox59mZ1fZQoaAZHQJTCyIpH7P9oB03oA2gIR0Ct2Z7IkqtpdX2UKGgGR0CWZZBGx2SuaAdN6ANoCEdArd33q7iAD3V9lChoBkdAj3aCPp6hQGgHTegDaAhHQK3fuZH/cWV1fZQoaAZHQI+RjROUMXtoB03oA2gIR0Ct4W/rKNhmdX2UKGgGR0CLACxEfDDTaAdN6ANoCEdAreZki2UjcHV9lChoBkdAjSYsWGh24mgHTegDaAhHQK3sYJRfnfV1fZQoaAZHQI1YFMM7U5NoB03oA2gIR0Ct7wt+b3GodX2UKGgGR0CY/VpdrwfAaAdN6ANoCEdArfEQYzi0fHV9lChoBkdAltVDakAPu2gHTegDaAhHQK32DGnXNC91fZQoaAZHQJh08BGQSzxoB03oA2gIR0Ct+lOjZcs2dX2UKGgGR0CWhPgFHJ9zaAdN6ANoCEdArfwdIsiB5HV9lChoBkdAmMfGNNrTIGgHTegDaAhHQK392AU+LWJ1fZQoaAZHQJUnBxPwd81oB03oA2gIR0CuAsHJ1aGIdX2UKGgGR0CX9+Y+B6KMaAdN6ANoCEdArgiCMPz4DnV9lChoBkdAkgT8TWXkYGgHTegDaAhHQK4LP26ClJp1fZQoaAZHQJcVEnqmj0toB03oA2gIR0CuDaTspobodX2UKGgGR0CY3U/+85CGaAdN6ANoCEdArhKyWcBltnV9lChoBkdAkXuALZzxPWgHTegDaAhHQK4W8Vh1DBx1fZQoaAZHQJcfyMYMvytoB03oA2gIR0CuGLCA2AG0dX2UKGgGR0CbKkjLB9CvaAdN6ANoCEdArhprDO1OTXVlLg=="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 62500,
|
91 |
+
"n_steps": 8,
|
92 |
+
"gamma": 0.99,
|
93 |
+
"gae_lambda": 0.9,
|
94 |
+
"ent_coef": 0.0,
|
95 |
+
"vf_coef": 0.4,
|
96 |
+
"max_grad_norm": 0.5,
|
97 |
+
"normalize_advantage": false
|
98 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ddfd2b42c5ecc5a1149f08ac9d05c563c6aa8743241906543229efce022c23d
|
3 |
+
size 115440
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5453559d2ade3f23b992668f868e7f2b528b0ca834ccb2e3cfe1ff0d2f87d4fa
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0af6e10b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0af6e10c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0af6e10ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0af6e10d30>", "_build": "<function ActorCriticPolicy._build at 0x7f0af6e10dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0af6e10e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0af6e10ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0af6e10f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0af6e13040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0af6e130d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0af6e13160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0af6e131f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0af6e8c600>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -2, "ortho_init": false}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677601209114906436, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAjScb/0DTC+48MfP6Qvmb+QoLK+ew8gPn8YBDy4e4s/mL5vP8MYmLscd66+YlYNvaL47L4wvB7AFC05P9H7Xbzskzk+HRHPPn0dTr74FR07Siqav+jl6T03DkC/cFL1vOdWdj++svu/1FS1PvQdIz9GXm0/MPuSv7ujBT/O3whAnNhmvyoVVr+O+xQ/YGo+vyxbXz+7hI2/pznOP6PmyL9Ik3+/mP2aPgCvQL3j3lvAbjjCvqGCAb4ggSU/udjdPY4UHb40bJY/EDuSPiDueT8KBYW/vrL7v9RUtT7v4si/nyzsPpC9Dr8+xCY/Hc4qP/B8zD/mCEI+XHGcvrhld7/LiG8/NVRbvKJi7b7L7YO9z+TtPq7h9j5dyzg/twLePHVJKr4GhH8/8kP4Ppp8mb9BZ1S/FBnGvhmThT9ZJyW+CgWFvwowAj/UVLU+9B0jP2t3Vz91nR8+LLYHPwoIB0Dj4oo+wP51PqtiGL9twGy/5CFtPzZccb48MDg/NzY0PljwpL9WKYE9H34QP8smub/8tDg8fPWDv9Rn2r3VoQpAzDPKvgEQlD/Auy+/LHZMP+dWdj++svu/1FS1Pu/iyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADTK482AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAov/WvQAAAAD9AO2/AAAAAOt2sz0AAAAA7kj5PwAAAAAuhuS7AAAAAPVo8D8AAAAAiQUUPAAAAAAzZ+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArS/ctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD0FOL0AAAAA8hrzvwAAAAAuhRc6AAAAAP9o6z8AAAAAQIG/vAAAAADTKe0/AAAAAEDxuD0AAAAATGv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSaqrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAEH188AAAAAMPa3r8AAAAAGtntvQAAAADoLvQ/AAAAABJk0r0AAAAAOqLnPwAAAAChBE28AAAAALso+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWpxQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc3GFvQAAAAALbfm/AAAAADfz8L0AAAAAMBvyPwAAAADwNZU9AAAAAJY16D8AAAAAK06TvQAAAACnUva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcdVjMFEAqMAWyUTegDjAF0lEdArMCjZ+QU6HV9lChoBkdAkrz251/2CmgHTegDaAhHQKzFBhm5Dqp1fZQoaAZHQJfeDDAJswdoB03oA2gIR0Csx5X36AOKdX2UKGgGR0CMznQD3dsSaAdN6ANoCEdArMpFlRP423V9lChoBkdAlJZqcZtNz2gHTegDaAhHQKzQT5YYBNp1fZQoaAZHQJWNwCYCyQhoB03oA2gIR0Cs1IY1pCa7dX2UKGgGR0CV748a4tpVaAdN6ANoCEdArNY+ctoSMHV9lChoBkdAlgjaBEroXGgHTegDaAhHQKzX7lOGj9J1fZQoaAZHQJQnfaXa8HxoB03oA2gIR0Cs3NCrtE5RdX2UKGgGR0CXBdMNMGoraAdN6ANoCEdArOEC6OHWSXV9lChoBkdAlIX4xtYSx2gHTegDaAhHQKzjPXYDklx1fZQoaAZHQJVjv3Cbc45oB03oA2gIR0Cs5cSIHkcTdX2UKGgGR0CUvo0k4WDZaAdN6ANoCEdArOxT7l7tzHV9lChoBkdAkqZbMLWqcWgHTegDaAhHQKzwpPWQOnV1fZQoaAZHQJefOMefZmJoB03oA2gIR0Cs8mY51eSkdX2UKGgGR0CT4LSvkiljaAdN6ANoCEdArPQWNm16V3V9lChoBkdAlen8N6PbPGgHTegDaAhHQKz45a4c3l11fZQoaAZHQJCIX7zkIX1oB03oA2gIR0Cs/QLS3LFGdX2UKGgGR0CVLoorFwT/aAdN6ANoCEdArP6+cBltj3V9lChoBkdAkZmZ8KG+K2gHTegDaAhHQK0BKKtPpIN1fZQoaAZHQJMEMp8WsRxoB03oA2gIR0CtCFWv8qFzdX2UKGgGR0CUN/NQCSzPaAdN6ANoCEdArQxwkcCHRHV9lChoBkdAlWav6O5rg2gHTegDaAhHQK0OJopx3mp1fZQoaAZHQJZXUoa1kUdoB03oA2gIR0CtD8xYRujzdX2UKGgGR0CVVHBV+7UYaAdN6ANoCEdArRSftrsSkHV9lChoBkdAlumkNBnjAGgHTegDaAhHQK0Yu43FUAF1fZQoaAZHQJbdUsYl6Z9oB03oA2gIR0CtGmtqQA+7dX2UKGgGR0CViLXzUZvUaAdN6ANoCEdArRxQR9PUKHV9lChoBkdAlc0Jf2K2rmgHTegDaAhHQK0jsTt9hJB1fZQoaAZHQJM1HC0ngHhoB03oA2gIR0CtKDDxTbWVdX2UKGgGR0COsk8s+V1PaAdN6ANoCEdArSnuAZsKs3V9lChoBkdAk3pDS5RTCWgHTegDaAhHQK0rn7NSqER1fZQoaAZHQJX+kI8hcJNoB03oA2gIR0CtMITHS4OMdX2UKGgGR0CWEPlO45LiaAdN6ANoCEdArTSy+tbLU3V9lChoBkdAlIGn7DVH4GgHTegDaAhHQK02bnA6+391fZQoaAZHQJaVLk0aZQZoB03oA2gIR0CtOCN8/lhgdX2UKGgGR0CVU6tEG7jDaAdN6ANoCEdArT9XnMdLhHV9lChoBkdAlZu+oxYaHmgHTegDaAhHQK1Ee/QjUut1fZQoaAZHQJdc0QZn+Q5oB03oA2gIR0CtRjoy0rsjdX2UKGgGR0CWjbWWhRIjaAdN6ANoCEdArUfme+VTrHV9lChoBkdAlPZd6LOzIGgHTegDaAhHQK1MpteD3/R1fZQoaAZHQJkyu+BYmsxoB03oA2gIR0CtUNSTyJ9BdX2UKGgGR0CXCYRgqmTDaAdN6ANoCEdArVKAQDmr83V9lChoBkdAlX96AnUlRmgHTegDaAhHQK1UMsq8UVV1fZQoaAZHQI8JFLFn7HhoB03oA2gIR0CtWq/3FkxzdX2UKGgGR0CZf45WRzRyaAdN6ANoCEdArWBk2NvOyHV9lChoBkdAl1G0vboKUmgHTegDaAhHQK1iKSK3uu11fZQoaAZHQJd766vq1PZoB03oA2gIR0CtY80YTCcgdX2UKGgGR0CYX46By0a7aAdN6ANoCEdArWil1GLDRHV9lChoBkdAlu91hoduHmgHTegDaAhHQK1s0yBTXJ51fZQoaAZHQJbtDLcKw6hoB03oA2gIR0CtbockD6nBdX2UKGgGR0CYzlJsO5J9aAdN6ANoCEdArXA7XQMQVnV9lChoBkdAmL4iFGoaUGgHTegDaAhHQK12KiD/VAl1fZQoaAZHQJjNuvyLAHpoB03oA2gIR0CtfGe0w8GLdX2UKGgGR0CZOqLRKHwgaAdN6ANoCEdArX4cZ5zHTHV9lChoBkdAmX8vIOpbU2gHTegDaAhHQK1/0pda+vh1fZQoaAZHQJak/h3qzJJoB03oA2gIR0CthLGp++dtdX2UKGgGR0CcDhzru6VdaAdN6ANoCEdArYjbR4QjEHV9lChoBkdAms89kWhysGgHTegDaAhHQK2KkGVzIWB1fZQoaAZHQJoEN47ihnJoB03oA2gIR0CtjD2FvhqCdX2UKGgGR0CU+wndfsu4aAdN6ANoCEdArZHKbF0gbXV9lChoBkdAlsoAvcrRSmgHTegDaAhHQK2YPyq+8Gt1fZQoaAZHQJSQtKbrkbRoB03oA2gIR0CtmhnWJ79idX2UKGgGR0CXO+AEt/WlaAdN6ANoCEdArZvJ2IO6NHV9lChoBkdAl2uPzz3AVWgHTegDaAhHQK2grcUuctp1fZQoaAZHQJms5t78ejpoB03oA2gIR0CtpOaNuLrHdX2UKGgGR0CYimT6zmfXaAdN6ANoCEdAraaqwljVhHV9lChoBkdAl8/T+R5kb2gHTegDaAhHQK2obuRcNYt1fZQoaAZHQJiZ7EtNBWxoB03oA2gIR0CtrclnAZbZdX2UKGgGR0CXT/pLVWjoaAdN6ANoCEdArbRUPJ7swHV9lChoBkdAmVcgF5fMOmgHTegDaAhHQK22m+X7cfx1fZQoaAZHQI1IQjKPn0VoB03oA2gIR0CtuGAy2x6fdX2UKGgGR0CUR5VmjCYUaAdN6ANoCEdArb1Kj1wo9nV9lChoBkdAlT4xbbDdg2gHTegDaAhHQK3Bk7Rv3rV1fZQoaAZHQJlZHKA8SwpoB03oA2gIR0Ctw06D5CWvdX2UKGgGR0CXjgYPXkHVaAdN6ANoCEdArcT9Lg4wRHV9lChoBkdAjQqgm7aqTGgHTegDaAhHQK3J6ur6tT11fZQoaAZHQJUGcnAqNIdoB03oA2gIR0Ct0FfoRqXXdX2UKGgGR0CWeoo11nuiaAdN6ANoCEdArdMEqYqoZXV9lChoBkdAfgtFt8/lhmgHTegDaAhHQK3Uuox59mZ1fZQoaAZHQJTCyIpH7P9oB03oA2gIR0Ct2Z7IkqtpdX2UKGgGR0CWZZBGx2SuaAdN6ANoCEdArd33q7iAD3V9lChoBkdAj3aCPp6hQGgHTegDaAhHQK3fuZH/cWV1fZQoaAZHQI+RjROUMXtoB03oA2gIR0Ct4W/rKNhmdX2UKGgGR0CLACxEfDDTaAdN6ANoCEdAreZki2UjcHV9lChoBkdAjSYsWGh24mgHTegDaAhHQK3sYJRfnfV1fZQoaAZHQI1YFMM7U5NoB03oA2gIR0Ct7wt+b3GodX2UKGgGR0CY/VpdrwfAaAdN6ANoCEdArfEQYzi0fHV9lChoBkdAltVDakAPu2gHTegDaAhHQK32DGnXNC91fZQoaAZHQJh08BGQSzxoB03oA2gIR0Ct+lOjZcs2dX2UKGgGR0CWhPgFHJ9zaAdN6ANoCEdArfwdIsiB5HV9lChoBkdAmMfGNNrTIGgHTegDaAhHQK392AU+LWJ1fZQoaAZHQJUnBxPwd81oB03oA2gIR0CuAsHJ1aGIdX2UKGgGR0CX9+Y+B6KMaAdN6ANoCEdArgiCMPz4DnV9lChoBkdAkgT8TWXkYGgHTegDaAhHQK4LP26ClJp1fZQoaAZHQJcVEnqmj0toB03oA2gIR0CuDaTspobodX2UKGgGR0CY3U/+85CGaAdN6ANoCEdArhKyWcBltnV9lChoBkdAkXuALZzxPWgHTegDaAhHQK4W8Vh1DBx1fZQoaAZHQJcfyMYMvytoB03oA2gIR0CuGLCA2AG0dX2UKGgGR0CbKkjLB9CvaAdN6ANoCEdArhprDO1OTXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (846 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1378.8569407085074, "std_reward": 393.85539580457123, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T17:26:50.489272"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8462cca58243e764df92d5eaeb7808c74c8d042ab964160a9d193f7e9e39221
|
3 |
+
size 2136
|