File size: 10,309 Bytes
87ce8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import re
import os
import ast
import time
import json
import argparse
from tqdm import tqdm
from multiprocessing.pool import Pool
import openai
from openai import AzureOpenAI
def init():
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version="2024-02-15-preview"
)
return client
def interaction(client, message_text):
completion = client.chat.completions.create(
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
messages = message_text,
temperature=0.7,
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None
)
return completion
def annotate(prediction_set, caption_files, output_dir):
"""
Evaluates question and answer pairs using GPT-3
Returns a score for correctness.
"""
for file in tqdm(caption_files):
key = file[:-5] # Strip file extension
qa_set = prediction_set[key]
question = qa_set['q']
answer = str(qa_set['a'])
pred = qa_set['pred']
try:
message = [
{
"role": "system",
"content": "You are an intelligent chatbot designed for evaluating the detail orientation of generative outputs for video-based question-answer pairs. "
"Your task is to compare the predicted answer with these correct answers and determine its level of detail, considering both completeness and specificity. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Check if the predicted answer covers all major points from the video. The response should not leave out any key aspects.\n"
"- Evaluate whether the predicted answer includes specific details rather than just generic points. It should provide comprehensive information that is tied to specific elements of the video.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Provide a single evaluation score that reflects the level of detail orientation of the prediction, considering both completeness and specificity.",
},
{
"role": "user",
"content": "Please evaluate the following video-based question-answer pair:\n\n"
f"Question: {question}\n"
f"Correct Answers: {answer}\n"
f"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a detail orientation score where the detail orientation score is an integer value between 0 and 5, with 5 indicating the highest level of detail orientation. "
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the detail orientation score in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {''score': 4.8}.",
},
]
completion = interaction(client, message)
# Convert response to a Python dictionary.
response_message = completion.choices[0].message.content
response_dict = ast.literal_eval(response_message)
result_qa_pair = [response_dict, qa_set]
# # Save the question-answer pairs to a json file.
with open(f"{output_dir}/{key}.json", "w") as f:
json.dump(result_qa_pair, f)
except Exception as e:
print(f"Error processing file '{key}': {e}")
time.sleep(1)
def longest_repeating_substring(s):
n = len(s)
dp = [[0] * (n+1) for _ in range(n+1)]
res = ""
res_length = 0
index = 0
for i in range(1, n+1):
for j in range(i+1, n+1):
if (dp[i-1][j-1] > 0 and dp[i-1][j-1] < (j-i)) or s[i-1] == s[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
if dp[i][j] > res_length:
res_length = dp[i][j]
index = max(i, index)
else:
dp[i][j] = 0
if res_length > 0:
for i in range(index-res_length+1, index+1):
res = res + s[i-1]
return res
def main(args):
if args.num_chunks > 1:
pred_contents = []
for _idx in range(args.num_chunks):
file = os.path.join(args.pred_path, f"{args.num_chunks}_{_idx}.json")
pred_contents += [json.loads(line) for line in open(file)]
else:
pred_contents = [json.loads(line) for line in open(args.pred_path)]
# Dictionary to store the count of occurrences for each video_id
video_id_counts = {}
new_pred_contents = []
# Iterate through each sample in pred_contents
for sample in pred_contents:
video_id = sample["video_name"]
if video_id in video_id_counts:
video_id_counts[video_id] += 1
else:
video_id_counts[video_id] = 0
# Create a new sample with the modified key
new_sample = sample
new_sample["video_name"] = f"{video_id.split('/')[-1].split('.')[0]}_{video_id_counts[video_id]}"
new_pred_contents.append(new_sample)
# Generating list of id's and corresponding files
id_list = [x["video_name"] for x in new_pred_contents]
caption_files = [f"{id}.json" for id in id_list]
output_dir = args.output_dir
# Generate output directory if not exists.
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Preparing dictionary of question-answer sets
prediction_set = {}
for sample in new_pred_contents:
id = sample["video_name"]
# print(sample)
question = sample["question"]
answer = sample["answer"]
pred = sample["pred"]
qa_set = {"q": question, "a": answer, "pred": pred}
prediction_set[id] = qa_set
# # Set the OpenAI API key.
# openai.api_key = args.api_key # Your API key here
# if args.api_base:
# openai.api_base = args.api_base # Your API base here
num_tasks = args.num_tasks
# While loop to ensure that all captions are processed.
while True:
try:
# Files that have not been processed yet.
completed_files = os.listdir(output_dir)
print(f"completed_files: {len(completed_files)}")
# Files that have not been processed yet.
incomplete_files = [f for f in caption_files if f not in completed_files]
print(f"incomplete_files: {len(incomplete_files)}")
# Break the loop when there are no incomplete files
if len(incomplete_files) == 0:
break
if len(incomplete_files) <= num_tasks:
num_tasks = 1
# Split tasks into parts.
part_len = len(incomplete_files) // num_tasks
all_parts = [incomplete_files[i : i + part_len] for i in range(0, len(incomplete_files), part_len)]
task_args = [(prediction_set, part, args.output_dir) for part in all_parts]
print("Generate", len(all_parts), "subprocess.")
# Use a pool of workers to process the files in parallel.
# with Pool() as pool:
# pool.starmap(annotate, task_args)
# import pdb;pdb.set_trace()
annotate(*task_args[0])
except Exception as e:
print(f"Error: {e}")
# Combine all the processed files into one
combined_contents = {}
json_path = args.output_json
# Iterate through json files
for file_name in os.listdir(output_dir):
if file_name.endswith(".json"):
file_path = os.path.join(output_dir, file_name)
with open(file_path, "r") as json_file:
try:
content = json.load(json_file)
combined_contents[file_name[:-5]] = content
except Exception as e:
print(f"Error: {e}")
pass
# Calculate average score
score_sum = 0
count = 0
for key, result in combined_contents.items():
count += 1
try:
# key = result[0].keys()[0]
# import pdb; pdb.set_trace()
for _ in result[0].keys():
score_match = result[0][_]
score = int(score_match)
score_sum += score
break
except Exception as e:
print(f"Error processing file '{key}': {e}")
import pdb; pdb.set_trace()
average_score = score_sum / count
combined_contents["average_score"] = average_score
with open(json_path, "w") as json_file:
json.dump(combined_contents, json_file, indent=4)
print("Average score for detailedness:", average_score)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
parser.add_argument("--num_chunks", default=1, type=int, help="Result splits")
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
args = parser.parse_args()
# Set the OpenAI API key.
os.environ["AZURE_OPENAI_KEY"] = args.api_key
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
client = init()
main(args)
|