File size: 4,049 Bytes
87ce8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import math
import os
import argparse
import json
import warnings
from tqdm import tqdm

from torch.utils.data import Dataset, DataLoader

import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init

# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


class MSVCDataset(Dataset):

    video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']

    def __init__(self, folder, questions, processor):
        self.folder = folder
        self.questions = questions
        self.processor = processor

    def __len__(self):
        return len(self.questions)
    
    def __getitem__(self, idx):
        sample = self.questions[idx]

        video_name = sample['video_path']
        question   = sample['question']
        answer     = sample['captions']

        video_path = os.path.join(self.folder, video_name)
        video_tensor = self.processor(video_path)

        return {
            'video':       video_tensor,
            'video_name':  video_name,
            'question':    question,
            'answer':      answer,
        }


def collate_fn(batch):
    vid  = [x['video'] for x in batch]
    v_id = [x['video_name'] for x in batch]
    qus  = [x['question'] for x in batch]
    ans  = [x['answer'] for x in batch]
    return vid, v_id, qus, ans


def run_inference(args):
    disable_torch_init()

    model, processor, tokenizer = model_init(args.model_path)

    gt_questions = json.load(open(args.question_file, "r"))
    gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)

    answer_file = os.path.join(args.output_file)
    os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
    ans_file = open(answer_file, "w")

    assert args.batch_size == 1, "Batch size must be 1 for inference"
    dataset = MSVCDataset(args.video_folder, gt_questions, processor['video'])
    dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)

    # Iterate over each sample in the ground truth file
    for idx, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)):
        video_tensor = video_tensors[0]
        video_name   = video_names[0]
        question     = questions[0]
        answer       = answers[0]

        output = mm_infer(
            video_tensor,
            question, 
            model=model,
            tokenizer=tokenizer,
            modal='video',
            do_sample=False,
        )

        sample_set = {'video_name': video_name, 'question': question, 'answer': answer, 'pred': output}
        ans_file.write(json.dumps(sample_set) + "\n")

    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument('--model-path', help='', required=True)
    parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
    parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
    parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--device", type=str, required=False, default='cuda:0')
    parser.add_argument("--batch-size", type=int, required=False, default=1)
    parser.add_argument("--num-workers", type=int, required=False, default=8)
    args = parser.parse_args()

    run_inference(args)