File size: 5,225 Bytes
87ce8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import json
import math
import argparse
import warnings
import traceback
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
class ActivitynetDataset(Dataset):
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
def __init__(self, questions, answers, processor):
self.questions = questions
self.answers = answers
self.processor = processor
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
sample = self.questions[idx]
answer = self.answers[idx]
video_name = sample['video_name']
question = sample['question']
question_id = sample['question_id']
answer = answer['answer']
for fmt in self.video_formats: # Added this line
temp_path = os.path.join(args.video_folder, f"v_{video_name}{fmt}")
if os.path.exists(temp_path):
video_path = temp_path
break
# BUG: compatibility for MSVD, MSRVTT, TGIF
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
if os.path.exists(temp_path):
video_path = temp_path
break
video_tensor = self.processor(video_path)
return {
'video': video_tensor,
'video_name': video_name,
'question': question,
'question_id': question_id,
'answer': answer,
}
def collate_fn(batch):
vid = [x['video'] for x in batch]
v_id = [x['video_name'] for x in batch]
qus = [x['question'] for x in batch]
qid = [x['question_id'] for x in batch]
ans = [x['answer'] for x in batch]
return vid, v_id, qus, qid, ans
def run_inference(args):
disable_torch_init()
# Initialize the model
model, processor, tokenizer = model_init(args.model_path)
gt_questions = json.load(open(args.question_file, "r"))
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
gt_answers = json.load(open(args.answer_file, "r"))
gt_answers = get_chunk(gt_answers, args.num_chunks, args.chunk_idx)
assert args.batch_size == 1, "Batch size must be 1 for inference"
dataset = ActivitynetDataset(gt_questions, gt_answers, processor['video'])
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
answer_file = os.path.join(args.output_file)
os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
ans_file = open(answer_file, "w")
# Iterate over each sample in the ground truth file
for i, (video_tensors, video_names, questions, question_ids, answers) in enumerate(tqdm(dataloader)):
video_tensor = video_tensors[0]
video_name = video_names[0]
question = questions[0]
question_id = question_ids[0]
answer = answers[0]
# question = question + '\n' + 'Answer the question using a single word or a short phrase with multiple words.'
try:
output = mm_infer(
video_tensor,
question,
model=model,
tokenizer=tokenizer,
modal='video',
do_sample=False,
)
except:
traceback.print_exc()
output = "error"
sample_set = {'id': question_id, 'question': question, 'answer': answer, 'pred': output}
ans_file.write(json.dumps(sample_set) + "\n")
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', help='', required=True)
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--device", type=str, required=False, default='cuda:0')
parser.add_argument("--batch-size", type=int, required=False, default=1)
parser.add_argument("--num-workers", type=int, required=False, default=8)
args = parser.parse_args()
run_inference(args)
|