VideoLLaMA2-7B / videollama2 /eval /eval_video_oqa_activitynet.py
Aliayub1995's picture
Upload 52 files
87ce8f2 verified
raw
history blame
7.95 kB
import os
import ast
import json
import time
import argparse
import traceback
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
from openai import AzureOpenAI
def init():
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version="2024-02-15-preview"
)
return client
def interaction(client, message_text):
completion = client.chat.completions.create(
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
messages = message_text,
temperature=0.7,
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None
)
return completion
def prompt_gpt(question, answer, pred, key, qa_set, output_dir):
message = [
{
"role": "system",
"content":
"You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the meaningful match between the predicted answer and the correct answer.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the correctness of the prediction compared to the answer."
},
{
"role": "user",
"content":
"Please evaluate the following video-based question-answer pair:\n\n"
f"Question: {question}\n"
f"Correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and 5, with 5 indicating the highest meaningful match. "
"Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {'pred': 'yes', 'score': 4.8}."
}
]
completion = interaction(client, message)
# Convert response to a Python dictionary.
response_message = completion.choices[0].message.content
response_dict = ast.literal_eval(response_message)
result_qa_pair = [response_dict, qa_set]
# # Save the question-answer pairs to a json file.
with open(f"{output_dir}/{key}.json", "w") as f:
json.dump(result_qa_pair, f)
def annotate(task_arg):
"""
Evaluates question and answer pairs using GPT-3
Returns a score for correctness.
"""
prediction_set, caption_files, output_dir, args = task_arg
for file in tqdm(caption_files):
key = file[:-5] # Strip file extension
qa_set = prediction_set[key]
question = qa_set['q']
answer = qa_set['a']
pred = qa_set['p']
try:
prompt_gpt(question, answer, pred, key, qa_set, output_dir)
except Exception as e:
prompt_gpt(question, answer, pred[:50], key, qa_set, output_dir)
traceback.print_exc()
time.sleep(1)
def main(args):
file = open(args.pred_path)
new_pred_contents = [eval(i.strip()) for i in file.readlines()]
# Generating list of id's and corresponding files
id_list = [x['id'] for x in new_pred_contents]
caption_files = [f"{id}.json" for id in id_list]
output_dir = args.output_dir
# Generate output directory if not exists.
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Preparing dictionary of question-answer sets
prediction_set = {}
for sample in new_pred_contents:
id = sample['id']
question = sample['question']
answer = sample['answer']
pred = sample['pred']
qa_set = {"q": question, "a": answer, "p": pred}
prediction_set[id] = qa_set
num_tasks = args.num_tasks
# While loop to ensure that all captions are processed.
while True:
try:
# Files that have not been processed yet.
completed_files = os.listdir(output_dir)
print(f"completed_files: {len(completed_files)}")
# Files that have not been processed yet.
incomplete_files = [f for f in caption_files if f not in completed_files]
print(f"incomplete_files: {len(incomplete_files)}")
# Break the loop when there are no incomplete files
if len(incomplete_files) == 0:
break
if len(incomplete_files) <= num_tasks:
num_tasks = 1
# Split tasks into parts.
part_len = len(incomplete_files) // num_tasks
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
# Use a pool of workers to process the files in parallel.
with ThreadPoolExecutor(max_workers=args.num_tasks) as executor:
list(tqdm(executor.map(annotate, task_args), total=len(task_args)))
except Exception as e:
print(f"Error: {e}")
# multiprocessing to combine json files
def combine_json(file_name):
file_path = os.path.join(output_dir, file_name)
with open(file_path, "r") as json_file:
content = json.load(json_file)
return (file_name[:-5], content)
files = os.listdir(output_dir)
with ThreadPoolExecutor(max_workers=64) as executor:
combined_contents = list(tqdm(executor.map(combine_json, files), total=len(files)))
# Calculate average score and accuracy
score_sum = 0
count = 0
yes_count = 0
no_count = 0
for key, result in tqdm(combined_contents):
try:
# Computing score
count += 1
score_match = result[0]['score']
score = int(score_match)
score_sum += score
# Computing accuracy
pred = result[0]['pred']
if "yes" in pred.lower():
yes_count += 1
elif "no" in pred.lower():
no_count += 1
except:
print(result)
average_score = score_sum / count
accuracy = yes_count / (yes_count + no_count)
print("Yes count:", yes_count)
print("No count:", no_count)
print("Accuracy:", accuracy)
print("Average score:", average_score)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
args = parser.parse_args()
# Set the OpenAI API key.
os.environ["AZURE_OPENAI_KEY"] = args.api_key
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
client = init()
main(args)