import os import re import math import json import argparse import warnings from tqdm import tqdm import torch from torch.utils.data import Dataset, DataLoader import sys sys.path.append('./') from videollama2 import model_init, mm_infer from videollama2.utils import disable_torch_init # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560) warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') def split_list(lst, n): """Split a list into n (roughly) equal-sized chunks""" chunk_size = math.ceil(len(lst) / n) # integer division return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] def get_chunk(lst, n, k): chunks = split_list(lst, n) return chunks[k] class VCGPTDataset(Dataset): video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv'] def __init__(self, data_list, processor): self.data_list = data_list self.processor = processor def __len__(self): return len(self.data_list) def __getitem__(self, idx): line = self.data_list[idx] question = line['Q'] answer = line['A'] video_name = line['video_name'] for fmt in self.video_formats: # Added this line temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") if os.path.exists(temp_path): video_path = temp_path break video_tensor = self.processor(video_path) return { 'video': video_tensor, 'video_name': video_name, 'question': question, 'answer': answer, } def collate_fn(batch): vid = [x['video'] for x in batch] v_id = [x['video_name'] for x in batch] qus = [x['question'] for x in batch] ans = [x['answer'] for x in batch] vid = torch.stack(vid, dim=0) return vid, v_id, qus, ans def run_inference(args): disable_torch_init() # Initialize the model model, processor, tokenizer = model_init(args.model_path) questions = json.load(open(args.question_file, "r")) questions = get_chunk(questions, args.num_chunks, args.chunk_idx) assert args.batch_size == 1, "Batch size must be 1 for inference" dataset = VCGPTDataset(questions, processor['video']) dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) answer_file = os.path.expanduser(args.answer_file) os.makedirs(os.path.dirname(answer_file), exist_ok=True) ans_file = open(answer_file, "w") # Iterate over each sample in the ground truth file for i, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)): # reduce batch dimension video_tensor = video_tensors[0] video_name = video_names[0] question = questions[0] answer = answers[0] output = mm_infer( video_tensor, question, model=model, tokenizer=tokenizer, modal='video', do_sample=False, ) qa = {'video_name': video_name, 'Q': question, 'A': answer, 'P': output} ans_file.write(json.dumps(qa) + "\n") ans_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model-path', help='', required=True) parser.add_argument('--video-folder', help='Directory containing video files.', required=True) parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) parser.add_argument("--num-chunks", type=int, default=1) parser.add_argument("--chunk-idx", type=int, default=0) parser.add_argument("--device", type=str, required=False, default='cuda:0') parser.add_argument("--batch-size", type=int, required=False, default=1) parser.add_argument("--num-workers", type=int, required=False, default=8) args = parser.parse_args() run_inference(args)