zyznull commited on
Commit
e26182b
1 Parent(s): 97fb655

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -16
README.md CHANGED
@@ -5628,22 +5628,23 @@ print(scores.tolist())
5628
 
5629
  You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-7B-instruct** on MTEB(English)/C-MTEB(Chinese):
5630
 
5631
- | Model Name | MTEB(56) | C-MTEB(35) |
5632
- |:----:|:---------:|:----------:|
5633
- | [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - |
5634
- | [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - |
5635
- | [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - |
5636
- | [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - |
5637
- | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - |
5638
- | [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 |
5639
- | [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 |
5640
- | [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 |
5641
- | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 |
5642
- | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 |
5643
- | [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 |
5644
- | [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 |
5645
- | [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - |
5646
- | [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.24** | **72.05** |
 
5647
 
5648
  ### GTE Models
5649
 
@@ -5661,6 +5662,7 @@ The gte series models have consistently released two types of models: encoder-on
5661
  | [GTE-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB |
5662
  | [GTE-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB |
5663
  | [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 3584 | 26.45GB |
 
5664
 
5665
  ## Citation
5666
 
 
5628
 
5629
  You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-7B-instruct** on MTEB(English)/C-MTEB(Chinese):
5630
 
5631
+ | Model Name | MTEB(56) | C-MTEB(35) | MTEB-fr(26) | MTEB-pl(26) |
5632
+ |:----:|:---------:|:----------:|:----------:|:----------:|
5633
+ | [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - | - | - |
5634
+ | [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - | - | - |
5635
+ | [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | - | - |
5636
+ | [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | - | - |
5637
+ | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | - | - |
5638
+ | [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 | - | - |
5639
+ | [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 | - | - |
5640
+ | [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 | - | - |
5641
+ | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 | - | - |
5642
+ | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 | - | - |
5643
+ | [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | - | - |
5644
+ | [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | - | - |
5645
+ | [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - | - | - |
5646
+ | [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.24** | **72.05** | **68.25** | **67.86** |
5647
+ | gte-Qwen2-1.5B-instruc(https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | 67.16 | 67.65 | 66.60 | 64.04 |
5648
 
5649
  ### GTE Models
5650
 
 
5662
  | [GTE-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB |
5663
  | [GTE-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB |
5664
  | [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 3584 | 26.45GB |
5665
+ | [GTE-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | Multilingual | 32000 | 1536 | 6.62GB |
5666
 
5667
  ## Citation
5668