new-impl / modeling.py
izhx's picture
Update `NewTokenClassifierOutput `
e244c93 verified
raw
history blame
59 kB
# coding=utf-8
# Copyright 2024 The GTE Team Authors and Alibaba Group.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch NEW model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
ModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
try:
import xformers.ops as xops
except ImportError as e:
xops = None
from .configuration import NewConfig
logger = logging.get_logger(__name__)
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
class IndexFirstAxis(torch.autograd.Function):
@staticmethod
def forward(ctx, input, indices):
ctx.save_for_backward(indices)
assert input.ndim >= 2
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
second_dim = other_shape.numel()
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
# return input[indices]
# return torch.gather(
# rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
# ).reshape(-1, *other_shape)
return torch.gather(
input.view(ctx.first_axis_dim, second_dim),
0,
indices.unsqueeze(-1).expand(indices.size(0), second_dim)
).reshape(-1, *other_shape)
@staticmethod
def backward(ctx, grad_output):
(indices,) = ctx.saved_tensors
assert grad_output.ndim >= 2
other_shape = grad_output.shape[1:]
# grad_output = rearrange(grad_output, "b ... -> b (...)")
grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
grad_input = torch.zeros(
[ctx.first_axis_dim, grad_output.shape[1]],
device=grad_output.device,
dtype=grad_output.dtype,
)
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
# grad_input[indices] = grad_output
# grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
grad_input.scatter_(
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
)
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
index_first_axis = IndexFirstAxis.apply
def unpad_input(hidden_states, attention_mask=None, indices=None):
"""
Arguments:
hidden_states: (batch, seqlen, ...)
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
Return:
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
"""
if indices is None:
assert attention_mask is not None
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
# so we write custom forward and backward to make it a bit faster.
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
return index_first_axis(hidden_states, indices)
class IndexPutFirstAxis(torch.autograd.Function):
@staticmethod
def forward(
ctx,
values: torch.Tensor,
indices: torch.Tensor,
first_axis_dim
) -> torch.Tensor:
ctx.save_for_backward(indices)
assert indices.ndim == 1
assert values.ndim >= 2
output = torch.zeros(
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
)
output[indices] = values
return output
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
indices, = ctx.saved_tensors
grad_values = grad_output[indices]
return grad_values, None, None
index_put_first_axis = IndexPutFirstAxis.apply
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
"""Add padding to sequences.
Arguments:
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
batch: int batch_size
seqlen: int max sequence length
Returns:
inputs: (batch, seqlen, ...)
"""
output = index_put_first_axis(inputs, indices, batch * seqlen)
return output.view(batch, seqlen, *inputs.shape[1:])
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos, sin = cos.to(q.dtype), sin.to(q.dtype)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
)
class NTKScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
self.scaling_factor = scaling_factor
self.mixed_b = mixed_b
super().__init__(dim, max_position_embeddings, base, device)
max_position_embeddings = max_position_embeddings * self.scaling_factor
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
if self.mixed_b is None:
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
else:
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
inv_freq = inv_freq / lambda_1_m # (10)
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
LAYER_NORM = {
'layer_norm': nn.LayerNorm,
'rms_norm': RMSNorm
}
class NewEmbeddings(nn.Module):
"""
Embedding and Unpadding.
"""
def __init__(self, config: NewConfig):
super().__init__()
self.padding_idx = config.pad_token_id
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
)
self.position_embedding_type = config.position_embedding_type
if self.position_embedding_type == 'absolute':
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
elif self.position_embedding_type == 'rope':
self._init_rope(config)
else:
raise ValueError
self.type_vocab_size = config.type_vocab_size
if self.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids is contiguous in memory and excluded when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings), persistent=False
)
def _init_rope(self, config):
kwargs = dict(
dim=int(config.hidden_size / config.num_attention_heads),
max_position_embeddings=config.max_position_embeddings,
base=config.rope_theta
)
if config.rope_scaling is None:
self.rotary_emb = RotaryEmbedding(**kwargs)
else:
kwargs.update(scaling_factor=config.rope_scaling["factor"])
scaling_type = config.rope_scaling["type"]
if scaling_type == 'ntk':
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
# elif scaling_type == "linear":
# self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
# elif scaling_type == "dynamic":
# self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def forward(
self,
unpad_inputs: bool,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
length: Optional[List[int]] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
"""
"""
if inputs_embeds is None:
device, input_shape = input_ids.device, input_ids.shape
else:
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
batch_size, seq_length = input_shape
# Set attention_mask if it's None
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if length is not None:
for i, l in enumerate(length):
attention_mask[i, l:] = 0
# Set attention_mask_bool for unpadding
if unpad_inputs:
attention_mask_bool = attention_mask.bool()
if length is None:
length = attention_mask.sum(-1).tolist()
# Get word embeddings
if inputs_embeds is None:
if unpad_inputs:
input_ids = input_ids[attention_mask_bool].unsqueeze(0)
inputs_embeds = self.word_embeddings(input_ids)
else:
if unpad_inputs:
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
embeddings = inputs_embeds
# Set and unpad position_ids
if position_ids is None:
if seq_length > self.position_ids.size(0):
self.register_buffer(
"position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
)
if unpad_inputs:
# [1, cumsum_seq_len]
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
else:
# [bs, seq_len]
position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
elif unpad_inputs:
position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
# Compute rotary embedding
if self.position_embedding_type == 'rope':
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
rope_embeds = rope_cos, rope_sin
else:
rope_embeds = None
if self.type_vocab_size > 0:
if token_type_ids is None:
token_type_ids = position_ids.mul(0)
else:
if self.type_vocab_size < 2:
token_type_ids.mul_(0)
if unpad_inputs:
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = embeddings + token_type_embeddings
# BERT position
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings, attention_mask, rope_embeds, length
class NewAttention(nn.Module):
def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
if pack_qkv is None:
pack_qkv = config.pack_qkv
self.pack_qkv = pack_qkv
if self.pack_qkv:
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
else:
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
if use_memory_efficient_attention is None:
use_memory_efficient_attention = self.config.use_memory_efficient_attention
self.use_memory_efficient_attention = use_memory_efficient_attention
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
if self.use_memory_efficient_attention:
assert self.memory_efficient_attention is not None, 'please install xformers'
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: torch.FloatTensor,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
attention_scale: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
) -> Tuple[torch.Tensor, ...]:
shape_hd = (self.num_attention_heads, self.attention_head_size)
# qkv
if self.pack_qkv and qkv_inputs is None:
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
else:
if qkv_inputs is None:
qkv_inputs = (hidden_states, hidden_states, hidden_states)
qkv_pack = [
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
]
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
if self.config.position_embedding_type == 'rope':
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
dtype = query_states.dtype
if self.config.logn_attention_scale and attention_scale is not None:
# https://kexue.fm/archives/8823
query_states = query_states * attention_scale.to(dtype)
if padding_inputs is not None:
query_states = pad_input(query_states.squeeze(), *padding_inputs)
key_states = pad_input(key_states.squeeze(), *padding_inputs)
value_states = pad_input(value_states.squeeze(), *padding_inputs)
if self.use_memory_efficient_attention:
assert self.memory_efficient_attention is not None, "xformers is not loaded"
assert output_attentions is False, "memory_efficient_attention do not output attentions"
assert head_mask is None, "Not support yet"
attention_probs = None
if torch.is_tensor(attention_bias):
attention_bias = attention_bias.to(dtype)
context_layer = self.memory_efficient_attention(
query_states,
key_states,
value_states,
attn_bias=attention_bias,
p=self.dropout.p
)
else:
if output_attentions and isinstance(self, NewSdpaAttention):
raise RuntimeError("SDPA do not output attentions")
context_layer, attention_probs = self._attention(
query_states, key_states, value_states, attention_bias, head_mask
)
if padding_inputs is not None:
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
# output proj
attn_output = self.o_proj(context_layer)
# add attentions if we output them
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
return outputs
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
"""
Args:
q/k/v: (B, L, n_head, head_dim),
Returns:
attn_output: (B L, n_head, head_dim)
"""
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_bias is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
if self.dropout.p > 0:
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_states)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
return context_layer, attention_probs
class NewSdpaAttention(NewAttention):
"""
New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
def __init__(self, config: NewConfig, **kwargs):
super().__init__(config, **kwargs)
# torch.backends.cuda.enable_mem_efficient_sdp(False)
# logger.warning(
# "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
# "`use_memory_efficient_attention=True` if it expected to use."
# )
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
attn_mask=attention_bias,
dropout_p=self.dropout.p if self.training else 0.0,
)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
return attn_output, None
NEW_ATTENTION_CLASSES = {
"eager": NewAttention,
# "flash_attention_2": , # TODO
"sdpa": NewSdpaAttention,
}
class NewGatedMLP(nn.Module):
"""
GLU Variants Improve Transformer.
"""
def __init__(self, config: NewConfig):
super().__init__()
self.intermediate_size = config.intermediate_size
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
self.act_fn = ACT2FN[config.hidden_act]
if config.hidden_dropout_prob > 0:
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
else:
self.hidden_dropout = None
def forward(self, hidden_states):
up_gate = self.up_gate_proj(hidden_states)
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
gate = self.act_fn(gate)
gated_states = gate * up_states
if self.hidden_dropout is not None:
gated_states = self.hidden_dropout(gated_states)
down_states = self.down_proj(gated_states)
return down_states
class NewLayer(nn.Module):
def __init__(
self,
config: NewConfig,
pack_qkv=None,
use_memory_efficient_attention=None,
attn_implementation=None
):
super().__init__()
if attn_implementation is None:
attn_implementation = config._attn_implementation
if use_memory_efficient_attention is None:
use_memory_efficient_attention = config.use_memory_efficient_attention
if use_memory_efficient_attention:
if attn_implementation != 'eager':
logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
attn_implementation = 'eager' # Since it will be SDPA by default for torch>=2.1.1
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
)
self.mlp = NewGatedMLP(config)
ln_class = LAYER_NORM[config.layer_norm_type]
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
if config.hidden_dropout_prob > 0:
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
else:
self.hidden_dropout = None
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: torch.FloatTensor,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
attention_scale: Optional[torch.FloatTensor] = None,
subset_indices: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
) -> Tuple[torch.Tensor, ...]:
# Multi head self attention
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
attention_outputs = self.attention(
hidden_states,
attention_bias,
rope_embeds,
padding_inputs,
attention_scale,
head_mask,
output_attentions=output_attentions,
qkv_inputs=qkv_inputs,
)
hidden_states = attention_outputs[0]
if self.hidden_dropout is not None:
hidden_states = self.hidden_dropout(hidden_states)
hidden_states = residual + hidden_states
# In pretraining, after the attention of last layer, we only need the masked tokens.
if subset_indices is not None:
hidden_states = hidden_states[subset_indices]
hidden_states = self.attn_ln(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
if self.hidden_dropout is not None:
hidden_states = self.hidden_dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.mlp_ln(hidden_states)
# add self attentions if we output attention weights
outputs = (hidden_states,) + attention_outputs[1:]
return outputs
class NewEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: Optional[torch.FloatTensor] = None,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
attention_scale: Optional[torch.FloatTensor] = None,
subset_indices: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if i >= len(self.layer) - 1:
layer_subset_indices = subset_indices
else:
layer_subset_indices = None
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_bias,
rope_embeds,
padding_inputs,
attention_scale,
layer_subset_indices,
layer_head_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_bias,
rope_embeds,
padding_inputs,
attention_scale,
layer_subset_indices,
layer_head_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
class NewPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class NewPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = NewConfig
base_model_prefix = "new"
supports_gradient_checkpointing = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class NewModel(NewPreTrainedModel):
"""
The bare New Model transformer outputting raw hidden-states without any specific head on top.
"""
def __init__(self, config: NewConfig, add_pooling_layer=False):
super().__init__(config)
self.config = config
self.embeddings = NewEmbeddings(config)
self.encoder = NewEncoder(config)
self.pooler = NewPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
length: Optional[List[int]] = None,
subset_indices: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
r"""
length (`list` of length `batch_size`, *optional*):
If is `None`, return padded `last_hidden_state`.
subset_indices ():
pass
unpad_inputs (`bool`, *optional*):
pass
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
output_padded = length is None
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# TODO: not used
# # Prepare head mask if needed
# # 1.0 in head_mask indicate we keep the head
# # attention_probs has shape bsz x n_heads x N x N
# # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# Get embeddings, may unpad them
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
unpad_inputs,
input_ids=input_ids,
attention_mask=attention_mask,
length=length,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds
)
batch_size, seq_length = input_shape
if unpad_inputs and self.config.use_memory_efficient_attention:
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
else:
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
if self.config.use_memory_efficient_attention:
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
padding_inputs = None
if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
if not self.config.use_memory_efficient_attention:
padding_inputs = (indices, *input_shape)
attention_scale = None
if self.config.logn_attention_scale:
logger.warning_once("TODO: logn_attention_scale")
# # attention scale log_512(input_len)
# attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
# # inference-time logn scale need clip 1
# if self.config.logn_attention_clip1:
# attention_scale.clip_(1)
# attention_scale = attention_scale[:, None, None, None]
# else:
# attention_scale = None
encoder_outputs = self.encoder(
embedding_output,
attention_bias=attention_bias,
rope_embeds=rope_embeds,
padding_inputs=padding_inputs,
attention_scale=attention_scale,
subset_indices=subset_indices,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if unpad_inputs and output_padded:
sequence_output = pad_input(
sequence_output.squeeze(), indices, batch_size, seq_length
)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class NewLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act]
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.norm(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class NewForMaskedLM(NewPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
def __init__(self, config: NewConfig):
super().__init__(config)
self.new = NewModel(config, add_pooling_layer=False)
self.lm_head = NewLMPredictionHead(config)
self.loss_fct = nn.CrossEntropyLoss()
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is None or not self.new.config.unpad_inputs:
length = None
subset_indices = None
else:
length = attention_mask.sum(-1).tolist()
labels = labels[attention_mask.bool()].unsqueeze(0)
subset_indices = labels > -100
outputs = self.new(
input_ids,
attention_mask=attention_mask,
length=length,
subset_indices=subset_indices,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
if subset_indices is None:
mask = attention_mask.bool()
prediction_scores = prediction_scores[mask]
labels = labels[mask]
else:
labels = labels[subset_indices]
masked_lm_loss = self.loss_fct(prediction_scores, labels)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NewForSequenceClassification(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.new = NewModel(config, add_pooling_layer=True)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NewForMultipleChoice(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.new = NewModel(config, add_pooling_layer=True)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@dataclass
class NewTokenClassifierOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class NewForTokenClassification(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.new = NewModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], NewTokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return NewTokenClassifierOutput(
loss=loss,
logits=logits,
last_hidden_state=sequence_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NewForQuestionAnswering(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.new = NewModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)