Redflashing
commited on
Commit
•
f4231fe
1
Parent(s):
4acd19b
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,121 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
|
8 |
---
|
9 |
+
|
10 |
+
# Baichuan-7B-Instruction
|
11 |
+
|
12 |
+
![](./alpachino.png)
|
13 |
+
|
14 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
15 |
+
|
16 |
+
## 介绍
|
17 |
+
|
18 |
+
Baichuan-7B-Instruction 为 Baichuan-7B 系列模型进行指令微调后的版本,预训练模型可见 [Baichuan-7B-Base](https://huggingface.co/baichuan-inc/Baichuan-7B-Base)。
|
19 |
+
|
20 |
+
|
21 |
+
## Demo
|
22 |
+
|
23 |
+
如下是一个使用 gradio 的模型 demo
|
24 |
+
|
25 |
+
```python
|
26 |
+
import gradio as gr
|
27 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction",trust_remote_code=True,use_fast=False)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction",trust_remote_code=True ).half()
|
31 |
+
model.cuda()
|
32 |
+
|
33 |
+
def generate(histories, max_new_tokens=2048, do_sample = True, top_p = 0.95, temperature = 0.35, repetition_penalty=1.1):
|
34 |
+
prompt = ""
|
35 |
+
for history in histories:
|
36 |
+
history_with_identity = "\nHuman:" + history[0] + "\n\nAssistant:" + history[1]
|
37 |
+
prompt += history_with_identity
|
38 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
39 |
+
outputs = model.generate(
|
40 |
+
input_ids = input_ids,
|
41 |
+
max_new_tokens=max_new_tokens,
|
42 |
+
early_stopping=True,
|
43 |
+
do_sample=do_sample,
|
44 |
+
top_p=top_p,
|
45 |
+
temperature=temperature,
|
46 |
+
repetition_penalty=repetition_penalty,
|
47 |
+
)
|
48 |
+
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
49 |
+
generate_text = rets[0].replace(prompt, "")
|
50 |
+
return generate_text
|
51 |
+
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
chatbot = gr.Chatbot()
|
54 |
+
msg = gr.Textbox()
|
55 |
+
clear = gr.Button("clear")
|
56 |
+
|
57 |
+
def user(user_message, history):
|
58 |
+
return "", history + [[user_message, ""]]
|
59 |
+
|
60 |
+
def bot(history):
|
61 |
+
print(history)
|
62 |
+
bot_message = generate(history)
|
63 |
+
history[-1][1] = bot_message
|
64 |
+
return history
|
65 |
+
|
66 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
67 |
+
bot, chatbot, chatbot
|
68 |
+
)
|
69 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
demo.launch(server_name="0.0.0.0")
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
```
|
77 |
+
|
78 |
+
## 量化部署
|
79 |
+
|
80 |
+
Baichuan-7B 支持 int8 和 int4 量化,用户只需在推理代码中简单修改两行即可实现。请注意,如果是为了节省显存而进行量化,应加载原始精度模型到 CPU 后再开始量化;避免在 `from_pretrained` 时添加 `device_map='auto'` 或者其它会导致把原始精度模型直接加载到 GPU 的行为的参数。
|
81 |
+
|
82 |
+
使用 int8 量化 (To use int8 quantization):
|
83 |
+
|
84 |
+
```python
|
85 |
+
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
|
86 |
+
model = model.quantize(8).cuda()
|
87 |
+
```
|
88 |
+
|
89 |
+
同样的,如需使用 int4 量化 (Similarly, to use int4 quantization):
|
90 |
+
|
91 |
+
```python
|
92 |
+
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
|
93 |
+
model = model.quantize(4).cuda()
|
94 |
+
```
|
95 |
+
|
96 |
+
## 训练详情
|
97 |
+
|
98 |
+
数据集:https://huggingface.co/datasets/shareAI/ShareGPT-Chinese-English-90k。
|
99 |
+
|
100 |
+
硬件:8*A40
|
101 |
+
|
102 |
+
## 测评结果
|
103 |
+
|
104 |
+
## [CMMLU](https://github.com/haonan-li/CMMLU)
|
105 |
+
|
106 |
+
| Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
|
107 |
+
| ------------------------------------------------------------ | :-------: | :--------: | :-------------: | :-------: | :------------: | :-------: |
|
108 |
+
| [ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b) | 41.28 | 52.85 | 53.37 | 52.24 | 50.58 | 49.95 |
|
109 |
+
| [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B) | 32.79 | 44.43 | 46.78 | 44.79 | 43.11 | 42.33 |
|
110 |
+
| [ChatGLM-6B](https://github.com/THUDM/GLM-130B) | 32.22 | 42.91 | 44.81 | 42.60 | 41.93 | 40.79 |
|
111 |
+
| [BatGPT-15B](https://arxiv.org/abs/2307.00360) | 33.72 | 36.53 | 38.07 | 46.94 | 38.32 | 38.51 |
|
112 |
+
| [Chinese-LLaMA-7B](https://github.com/ymcui/Chinese-LLaMA-Alpaca) | 26.76 | 26.57 | 27.42 | 28.33 | 26.73 | 27.34 |
|
113 |
+
| [MOSS-SFT-16B](https://github.com/OpenLMLab/MOSS) | 25.68 | 26.35 | 27.21 | 27.92 | 26.70 | 26.88 |
|
114 |
+
| [Chinese-GLM-10B](https://github.com/THUDM/GLM) | 25.57 | 25.01 | 26.33 | 25.94 | 25.81 | 25.80 |
|
115 |
+
| [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-7B) | 42.04 | 60.49 | 59.55 | 56.60 | 55.72 | 54.63 |
|
116 |
+
| [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-7B) | 37.32 | 56.24 | 54.79 | 54.07 | 52.23 | 50.48 |
|
117 |
+
| **Baichuan-13B-Instruction** | **42.56** | **62.09** | **60.41** | **58.97** | **56.95** | **55.88** |
|
118 |
+
| **Baichuan-7B-Instruction** | **33.94** | **46.31** | **47.73** | **45.84** | **44.88** | **43.53** |
|
119 |
+
|
120 |
+
> 说明:CMMLU 是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们直接使用其官方的[评测脚本](https://github.com/haonan-li/CMMLU)对模型进行评测。Model zero-shot 表格中 [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) 的得分来自我们直接运行 CMMLU 官方的评测脚本得到,其他模型的的得分来自于 [CMMLU](https://github.com/haonan-li/CMMLU/tree/master) 官方的评测结果.
|
121 |
+
|