import os import numpy as np import torch import torchvision from PIL import Image from pytorch_lightning.callbacks import Callback from pytorch_lightning.utilities.distributed import rank_zero_only class ImageLogger(Callback): def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True, rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, log_images_kwargs=None): super().__init__() self.rescale = rescale self.batch_freq = batch_frequency self.max_images = max_images if not increase_log_steps: self.log_steps = [self.batch_freq] self.clamp = clamp self.disabled = disabled self.log_on_batch_idx = log_on_batch_idx self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} self.log_first_step = log_first_step @rank_zero_only def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): root = os.path.join(save_dir, "image_log", split) for k in images: grid = torchvision.utils.make_grid(images[k], nrow=4) if self.rescale: grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w if k != "conditioning": grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) grid = grid.numpy() grid = (grid * 255).astype(np.uint8) filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) path = os.path.join(root, filename) os.makedirs(os.path.split(path)[0], exist_ok=True) Image.fromarray(grid).save(path) def log_img(self, pl_module, batch, batch_idx, split="train"): check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step if (self.check_frequency(check_idx) and #batch_idx % self.batch_freq == 0 hasattr(pl_module, "log_images") and callable(pl_module.log_images) and self.max_images > 0): logger = type(pl_module.logger) is_train = pl_module.training if is_train: pl_module.eval() with torch.no_grad(): images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) for k in images: N = min(images[k].shape[0], self.max_images) images[k] = images[k][:N] if isinstance(images[k], torch.Tensor): images[k] = images[k].detach().cpu() if self.clamp: images[k] = torch.clamp(images[k], -1., 1.) self.log_local(pl_module.logger.save_dir, split, images, pl_module.global_step, pl_module.current_epoch, batch_idx) if is_train: pl_module.train() def check_frequency(self, check_idx): return check_idx % self.batch_freq == 0 def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): if not self.disabled: self.log_img(pl_module, batch, batch_idx, split="train")