from share import * import config import einops import gradio as gr import numpy as np import torch import random import cv2 from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler model = create_model('models/cldm_v15-mask.yaml').cpu() model.load_state_dict(load_state_dict('/tmp/paint-by-example-controlnet-full/controlnet-full-step=20999.ckpt', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(ref_image, control_img, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): ref = cv2.resize(ref_image, (224,224)) ref = torch.from_numpy(np.array(ref).astype(np.float32)).cuda() / 255.0 ref = torch.stack([ref for _ in range(num_samples)], dim=0) ref = einops.rearrange(ref, 'b h w c -> b c h w').clone() control = cv2.resize(control_img, (image_resolution ,image_resolution)) control = resize_image(HWC3(control), image_resolution) control = torch.from_numpy(np.array(control).astype(np.float32)).cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() B, C, H, W = control.shape if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning(ref)]} un_cond = {"c_concat": [control], "c_crossattn": [model.learnable_vector]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Paint-by-Example + ControlNet") with gr.Row(): with gr.Column(): control_image = gr.Image(label="img mask", source='upload', type="numpy") ref_image = gr.Image(label="ref image", source='upload', type="numpy") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [ref_image, control_image, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(debug=True, share=True)