--- license: mit base_model: austin/Austin-MeDeBERTa tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_2 results: [] --- # fold_2 This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0090 - Precision: 0.7446 - Recall: 0.7718 - F1: 0.7580 - Accuracy: 0.9975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0403 | 1.0 | 635 | 0.0103 | 0.6230 | 0.6563 | 0.6392 | 0.9968 | | 0.0097 | 2.0 | 1270 | 0.0082 | 0.7291 | 0.7352 | 0.7321 | 0.9974 | | 0.0056 | 3.0 | 1905 | 0.0090 | 0.7446 | 0.7718 | 0.7580 | 0.9975 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0