File size: 4,136 Bytes
a89faf2 0dea54f a89faf2 0dea54f a89faf2 0dea54f a89faf2 26fe470 a89faf2 0dea54f a89faf2 0dea54f a89faf2 26fe470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
base_model: Amna100/PreTraining-MLM
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fold_4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/rw6sjeap)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/g4pyaj7k)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/t4il24wd)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/qf2ywrxq)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/9xmjfnoc)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/vp363qmp)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/10xzvwgi)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/i1j07et7)
# fold_4
This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0096
- Precision: 0.7641
- Recall: 0.6825
- F1: 0.7210
- Accuracy: 0.9995
- Roc Auc: 0.9961
- Pr Auc: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:|
| 0.0278 | 1.0 | 632 | 0.0107 | 0.5932 | 0.7270 | 0.6533 | 0.9993 | 0.9948 | 0.9999 |
| 0.01 | 2.0 | 1264 | 0.0096 | 0.7641 | 0.6825 | 0.7210 | 0.9995 | 0.9961 | 0.9999 |
| 0.0056 | 3.0 | 1896 | 0.0131 | 0.7207 | 0.6202 | 0.6667 | 0.9994 | 0.9827 | 0.9997 |
| 0.0025 | 4.0 | 2528 | 0.0114 | 0.7937 | 0.6736 | 0.7287 | 0.9995 | 0.9860 | 0.9997 |
| 0.0012 | 5.0 | 3160 | 0.0141 | 0.7727 | 0.6558 | 0.7095 | 0.9995 | 0.9860 | 0.9998 |
| 0.0008 | 6.0 | 3792 | 0.0126 | 0.7659 | 0.6795 | 0.7201 | 0.9995 | 0.9894 | 0.9998 |
| 0.0007 | 7.0 | 4424 | 0.0146 | 0.7845 | 0.6588 | 0.7161 | 0.9995 | 0.9917 | 0.9998 |
| 0.0003 | 8.0 | 5056 | 0.0161 | 0.7789 | 0.6588 | 0.7138 | 0.9995 | 0.9908 | 0.9998 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|