--- license: mit base_model: Amna100/PreTraining-MLM tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fold_4 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/rw6sjeap) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/g4pyaj7k) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/t4il24wd) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/qf2ywrxq) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/9xmjfnoc) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/vp363qmp) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/10xzvwgi) [Visualize in Weights & Biases](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/i1j07et7) # fold_4 This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0096 - Precision: 0.7641 - Recall: 0.6825 - F1: 0.7210 - Accuracy: 0.9995 - Roc Auc: 0.9961 - Pr Auc: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:| | 0.0278 | 1.0 | 632 | 0.0107 | 0.5932 | 0.7270 | 0.6533 | 0.9993 | 0.9948 | 0.9999 | | 0.01 | 2.0 | 1264 | 0.0096 | 0.7641 | 0.6825 | 0.7210 | 0.9995 | 0.9961 | 0.9999 | | 0.0056 | 3.0 | 1896 | 0.0131 | 0.7207 | 0.6202 | 0.6667 | 0.9994 | 0.9827 | 0.9997 | | 0.0025 | 4.0 | 2528 | 0.0114 | 0.7937 | 0.6736 | 0.7287 | 0.9995 | 0.9860 | 0.9997 | | 0.0012 | 5.0 | 3160 | 0.0141 | 0.7727 | 0.6558 | 0.7095 | 0.9995 | 0.9860 | 0.9998 | | 0.0008 | 6.0 | 3792 | 0.0126 | 0.7659 | 0.6795 | 0.7201 | 0.9995 | 0.9894 | 0.9998 | | 0.0007 | 7.0 | 4424 | 0.0146 | 0.7845 | 0.6588 | 0.7161 | 0.9995 | 0.9917 | 0.9998 | | 0.0003 | 8.0 | 5056 | 0.0161 | 0.7789 | 0.6588 | 0.7138 | 0.9995 | 0.9908 | 0.9998 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1