File size: 1,592 Bytes
ab0bbb2
f41ed84
99568c3
f41ed84
 
99568c3
 
f41ed84
 
 
ab0bbb2
 
f41ed84
 
ab0bbb2
f41ed84
ab0bbb2
f41ed84
 
 
 
 
ab0bbb2
f41ed84
ab0bbb2
f41ed84
ab0bbb2
f41ed84
ab0bbb2
f41ed84
ab0bbb2
f41ed84
ab0bbb2
f41ed84
ab0bbb2
f41ed84
ab0bbb2
f41ed84
ab0bbb2
f41ed84
 
 
 
 
 
 
 
 
ab0bbb2
f41ed84
ab0bbb2
f41ed84
 
 
 
 
ab0bbb2
 
f41ed84
ab0bbb2
f41ed84
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: openai/whisper-small
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: Whisper-Anuj-small-Tamil
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper-Anuj-small-Tamil

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1454
- Wer: 44.0964
- Cer: 9.0478

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1800

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.1086        | 3.0   | 600  | 0.1286          | 60.0    | 19.7609 |
| 0.0132        | 6.0   | 1200 | 0.1274          | 45.6225 | 9.3391  |
| 0.001         | 9.0   | 1800 | 0.1454          | 44.0964 | 9.0478  |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1