File size: 2,226 Bytes
66e78c1
d700253
 
 
 
 
 
 
 
 
66e78c1
 
d700253
 
66e78c1
d700253
66e78c1
d700253
 
 
 
 
66e78c1
d700253
66e78c1
d700253
66e78c1
d700253
66e78c1
d700253
66e78c1
d700253
66e78c1
d700253
66e78c1
d700253
66e78c1
d700253
66e78c1
d700253
 
 
 
 
 
 
 
 
 
 
 
66e78c1
d700253
66e78c1
d700253
 
 
 
 
 
 
 
 
 
 
 
66e78c1
 
d700253
66e78c1
d700253
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-Odia-large-xlsr53
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-Odia-large-xlsr53

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2083
- Wer: 0.1897
- Cer: 0.0476

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 6.9058        | 2.3622  | 300  | 3.1227          | 1.0    | 0.8690 |
| 1.1432        | 4.7244  | 600  | 0.4002          | 0.4333 | 0.1134 |
| 0.2628        | 7.0866  | 900  | 0.3145          | 0.3314 | 0.0850 |
| 0.1368        | 9.4488  | 1200 | 0.2585          | 0.2716 | 0.0686 |
| 0.0865        | 11.8110 | 1500 | 0.2332          | 0.2524 | 0.0619 |
| 0.0596        | 14.1732 | 1800 | 0.2253          | 0.2196 | 0.0538 |
| 0.0445        | 16.5354 | 2100 | 0.2202          | 0.2100 | 0.0527 |
| 0.0324        | 18.8976 | 2400 | 0.2126          | 0.2001 | 0.0511 |
| 0.0264        | 21.2598 | 2700 | 0.2089          | 0.1966 | 0.0498 |
| 0.0211        | 23.6220 | 3000 | 0.2083          | 0.1897 | 0.0476 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 1.18.3
- Tokenizers 0.19.1