File size: 2,936 Bytes
52952ec d782aa1 6ab5818 d782aa1 6ab5818 d782aa1 52952ec d782aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: CAMeL-Lab/bert-base-arabic-camelbert-da
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: unfortified_camel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unfortified_camel
This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-da](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3917
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.0546 | 50 | 0.5498 | 0.75 |
| No log | 0.1092 | 100 | 0.5089 | 0.82 |
| No log | 0.1638 | 150 | 0.4593 | 0.79 |
| No log | 0.2183 | 200 | 0.3678 | 0.85 |
| No log | 0.2729 | 250 | 0.4435 | 0.85 |
| No log | 0.3275 | 300 | 0.3393 | 0.88 |
| No log | 0.3821 | 350 | 0.3425 | 0.88 |
| No log | 0.4367 | 400 | 0.3758 | 0.82 |
| No log | 0.4913 | 450 | 0.4545 | 0.87 |
| 0.3339 | 0.5459 | 500 | 0.4324 | 0.87 |
| 0.3339 | 0.6004 | 550 | 0.3225 | 0.87 |
| 0.3339 | 0.6550 | 600 | 0.3307 | 0.89 |
| 0.3339 | 0.7096 | 650 | 0.2996 | 0.9 |
| 0.3339 | 0.7642 | 700 | 0.3002 | 0.89 |
| 0.3339 | 0.8188 | 750 | 0.3749 | 0.89 |
| 0.3339 | 0.8734 | 800 | 0.3242 | 0.89 |
| 0.3339 | 0.9279 | 850 | 0.2887 | 0.91 |
| 0.3339 | 0.9825 | 900 | 0.3507 | 0.87 |
| 0.3339 | 1.0371 | 950 | 0.3718 | 0.91 |
| 0.2461 | 1.0917 | 1000 | 0.3833 | 0.91 |
| 0.2461 | 1.1463 | 1050 | 0.3840 | 0.89 |
| 0.2461 | 1.2009 | 1100 | 0.3659 | 0.88 |
| 0.2461 | 1.2555 | 1150 | 0.3298 | 0.91 |
| 0.2461 | 1.3100 | 1200 | 0.3691 | 0.91 |
| 0.2461 | 1.3646 | 1250 | 0.3917 | 0.88 |
### Framework versions
- Transformers 4.42.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|