--- base_model: Anwaarma/Improved-MARBERT-attempt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: unfortified_marbert results: [] --- # unfortified_marbert This model is a fine-tuned version of [Anwaarma/Improved-MARBERT-attempt2](https://huggingface.co/Anwaarma/Improved-MARBERT-attempt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3890 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.0546 | 50 | 0.2510 | 0.92 | | No log | 0.1092 | 100 | 0.1780 | 0.94 | | No log | 0.1638 | 150 | 0.3531 | 0.88 | | No log | 0.2183 | 200 | 0.2776 | 0.94 | | No log | 0.2729 | 250 | 0.2577 | 0.94 | | No log | 0.3275 | 300 | 0.2271 | 0.94 | | No log | 0.3821 | 350 | 0.1877 | 0.94 | | No log | 0.4367 | 400 | 0.1124 | 0.96 | | No log | 0.4913 | 450 | 0.3439 | 0.91 | | 0.2508 | 0.5459 | 500 | 0.3198 | 0.89 | | 0.2508 | 0.6004 | 550 | 0.2230 | 0.92 | | 0.2508 | 0.6550 | 600 | 0.2747 | 0.9 | | 0.2508 | 0.7096 | 650 | 0.3376 | 0.9 | | 0.2508 | 0.7642 | 700 | 0.2156 | 0.93 | | 0.2508 | 0.8188 | 750 | 0.3291 | 0.9 | | 0.2508 | 0.8734 | 800 | 0.2528 | 0.94 | | 0.2508 | 0.9279 | 850 | 0.2131 | 0.92 | | 0.2508 | 0.9825 | 900 | 0.2262 | 0.95 | | 0.2508 | 1.0371 | 950 | 0.2967 | 0.9 | | 0.2238 | 1.0917 | 1000 | 0.2900 | 0.94 | | 0.2238 | 1.1463 | 1050 | 0.2720 | 0.92 | | 0.2238 | 1.2009 | 1100 | 0.3414 | 0.92 | | 0.2238 | 1.2555 | 1150 | 0.2702 | 0.94 | | 0.2238 | 1.3100 | 1200 | 0.3387 | 0.93 | | 0.2238 | 1.3646 | 1250 | 0.3890 | 0.92 | ### Framework versions - Transformers 4.42.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1