Update handler.py
Browse files- handler.py +22 -3
handler.py
CHANGED
@@ -37,6 +37,28 @@ class EndpointHandler():
|
|
37 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
38 |
|
39 |
def __call__(self, data: Any) -> Dict[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Extract parameters from the payload
|
41 |
prompt = data.get("prompt", None)
|
42 |
negative_prompt = data.get("negative_prompt", None)
|
@@ -45,8 +67,6 @@ class EndpointHandler():
|
|
45 |
num_inference_steps = data.get("steps", 30)
|
46 |
guidance_scale = data.get("cfg_scale", 7)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
# Extract controlnet configuration from payload
|
51 |
controlnet_config = data.get("alwayson_scripts", {}).get("controlnet", {}).get("args", [{}])[0]
|
52 |
|
@@ -61,7 +81,6 @@ class EndpointHandler():
|
|
61 |
width=width,
|
62 |
controlnet_conditioning_scale=1.0,
|
63 |
generator=self.generator,
|
64 |
-
|
65 |
)
|
66 |
|
67 |
# Get the generated image
|
|
|
37 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
38 |
|
39 |
def __call__(self, data: Any) -> Dict[str, str]:
|
40 |
+
# Example JSON payload for testing
|
41 |
+
example_payload = {
|
42 |
+
"prompt": "a beautiful landscape",
|
43 |
+
"negative_prompt": "blur",
|
44 |
+
"width": 1024,
|
45 |
+
"height": 1024,
|
46 |
+
"steps": 30,
|
47 |
+
"cfg_scale": 7,
|
48 |
+
"alwayson_scripts": {
|
49 |
+
"controlnet": {
|
50 |
+
"args": [
|
51 |
+
{
|
52 |
+
"enabled": True,
|
53 |
+
"input_image": "image in base64",
|
54 |
+
"model": "control_sd15_depth [fef5e48e]",
|
55 |
+
"control_mode": "Balanced"
|
56 |
+
}
|
57 |
+
]
|
58 |
+
}
|
59 |
+
}
|
60 |
+
}
|
61 |
+
|
62 |
# Extract parameters from the payload
|
63 |
prompt = data.get("prompt", None)
|
64 |
negative_prompt = data.get("negative_prompt", None)
|
|
|
67 |
num_inference_steps = data.get("steps", 30)
|
68 |
guidance_scale = data.get("cfg_scale", 7)
|
69 |
|
|
|
|
|
70 |
# Extract controlnet configuration from payload
|
71 |
controlnet_config = data.get("alwayson_scripts", {}).get("controlnet", {}).get("args", [{}])[0]
|
72 |
|
|
|
81 |
width=width,
|
82 |
controlnet_conditioning_scale=1.0,
|
83 |
generator=self.generator,
|
|
|
84 |
)
|
85 |
|
86 |
# Get the generated image
|