File size: 1,887 Bytes
6b78fab
 
 
730c5f4
6b78fab
 
 
 
 
 
 
 
730c5f4
6b78fab
 
 
 
 
 
 
 
 
 
 
 
 
730c5f4
6b78fab
 
730c5f4
6b78fab
 
 
 
 
730c5f4
6b78fab
730c5f4
6b78fab
 
730c5f4
 
6b78fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730c5f4
6b78fab
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- super_glue
metrics:
- accuracy
- f1
model-index:
- name: bert-multirc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: super_glue
      type: super_glue
      config: multirc
      split: validation
      args: multirc
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.574463696369637
    - name: F1
      type: f1
      value: 0.5000357077611722
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-multirc

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6812
- Accuracy: 0.5745
- F1: 0.5000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6862        | 1.0   | 1703 | 0.6812          | 0.5745   | 0.5000 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3