--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy - f1 model-index: - name: bert-multirc results: - task: name: Text Classification type: text-classification dataset: name: super_glue type: super_glue config: multirc split: validation args: multirc metrics: - name: Accuracy type: accuracy value: 0.574463696369637 - name: F1 type: f1 value: 0.5000357077611722 --- # bert-multirc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6812 - Accuracy: 0.5745 - F1: 0.5000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6862 | 1.0 | 1703 | 0.6812 | 0.5745 | 0.5000 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3