--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: Bert_Stacked_model_100 results: [] datasets: - pkavumba/balanced-copa - 12ml/e-CARE pipeline_tag: question-answering --- # Bert_Stacked_model_100 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1094 - F1: 0.5669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.249 | 1.0 | 1576 | 1.1862 | 0.5172 | | 1.1963 | 2.0 | 3152 | 1.1461 | 0.5407 | | 1.1495 | 3.0 | 4728 | 1.1241 | 0.5570 | | 1.1192 | 4.0 | 6304 | 1.1172 | 0.5634 | | 1.1025 | 5.0 | 7880 | 1.1094 | 0.5669 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1