ppo-LunarLander-v2 / config.json
Artachtron's picture
My first RL model
f590e25
raw
history blame
14 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b2e2a95e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b2e2a9670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b2e2a9700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b2e2a9790>", "_build": "<function ActorCriticPolicy._build at 0x7f9b2e2a9820>", "forward": "<function ActorCriticPolicy.forward at 0x7f9b2e2a98b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b2e2a9940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9b2e2a99d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b2e2a9a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b2e2a9af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b2e2a9b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9b2e2a1ae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670715513471540551, "learning_rate": 0.0, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACozWr7eVzs//G2nPbB12r73scO+Eo2XPQAAAAAAAAAAE9oGPgrpb7uCCdE8TgIUuyb3urzQLP67AACAPwAAgD+aM2s835OYPEu8sTuSpVe+yIwXvfbdE74AAAAAAAAAAI3rtz0wlIg+N7ydvLC6nb4PzpW9tz2gPQAAAAAAAAAAANT9PHr0tz+P80M/YACBPgAxw7zDOGq9AAAAAAAAAADWCIc+zV0SvbKgcDyxj9E7iy+Evg4RxLsAAAAAAAAAALPkbz7+tZA9ZrSQvgTuIL65lUi+CgrJvQAAAAAAAAAAutoQPh+Anzwt8rW9V1YRvhflOr1dtMW8AAAAAAAAAACtjTM+gdamP/qcBj//5BG/QoY9PnVr3z0AAAAAAAAAAMBdJj7sUOq7Lt5zPNI8L7pImE29BV1EuwAAgD8AAIA/mqSOPO9+QT7KfTG+Q+lwvv4vDb54vOc9AAAAAAAAAAC20uA+O3gDvtV+oj06MIC8pbp2vtIT/jwAAIA/AACAP9opvj1ScO65k9WGsvmWTTDTkae4wij6MgAAgD8AAIA/s/HLPaE3Vj7BTQO+rKRsvhtAk70xnI89AAAAAAAAAACazdO97L2ZPPhwbT6Ccoi+p3r5PSt47DwAAAAAAAAAABPVXD7mvlw/gFfCPrOEMr8AeYk+ngqVPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBvNXyNwZcUCUhpRSlIwBbJRLyYwBdJRHQLG3XS6lLvl1fZQoaAZoCWgPQwjr4ctEUb5wQJSGlFKUaBVL2mgWR0Cxt4PjbSJCdX2UKGgGaAloD0MIoKcBgyQ/ckCUhpRSlGgVS9poFkdAsbemfg75mHV9lChoBmgJaA9DCNv8v+oIe3BAlIaUUpRoFUvMaBZHQLG3wzrNW2h1fZQoaAZoCWgPQwhIpdjReDByQJSGlFKUaBVLzGgWR0Cxt8l6Rhc8dX2UKGgGaAloD0MIxf6ye/KxbkCUhpRSlGgVS9hoFkdAsbfpI9TxXnV9lChoBmgJaA9DCCSbq+Z5zHFAlIaUUpRoFUvYaBZHQLG4O1tO2y91fZQoaAZoCWgPQwid2EP7WAdyQJSGlFKUaBVL/GgWR0CxuLt2X9iudX2UKGgGaAloD0MIW7VrQlqDRECUhpRSlGgVS6VoFkdAsbjnRD1GsnV9lChoBmgJaA9DCLovZ7arTHFAlIaUUpRoFUvraBZHQLG5BEPlMh51fZQoaAZoCWgPQwgW3XpNT29xQJSGlFKUaBVNAgFoFkdAsbkMNVinYXV9lChoBmgJaA9DCDrJVpcTJnNAlIaUUpRoFU0NAWgWR0CxuQptBOYZdX2UKGgGaAloD0MIEM8SZMROcECUhpRSlGgVS+1oFkdAsbkaS8rZrnV9lChoBmgJaA9DCIV7Zd7qKnNAlIaUUpRoFU0BAWgWR0CxuUAJHAh0dX2UKGgGaAloD0MIyQBQxQ0ubUCUhpRSlGgVS+RoFkdAsbl+mGdqcnV9lChoBmgJaA9DCGCSyhSzZnBAlIaUUpRoFUvVaBZHQLG5kDYAbQ11fZQoaAZoCWgPQwiLqIk+X6lyQJSGlFKUaBVL2WgWR0CxucEPczqKdX2UKGgGaAloD0MIYvNxbSi2cUCUhpRSlGgVS/NoFkdAsboeA9V3lnV9lChoBmgJaA9DCI5cN6X8CXBAlIaUUpRoFU19A2gWR0CxujQOe8PGdX2UKGgGaAloD0MIy2d5HhygcECUhpRSlGgVS/xoFkdAsbozK0UoKHV9lChoBmgJaA9DCPnWh/VGqHBAlIaUUpRoFU0KAWgWR0CxumGVu76IdX2UKGgGaAloD0MI740hALh8cECUhpRSlGgVTQMBaBZHQLG6k8e0Xxh1fZQoaAZoCWgPQwg8bCIzFxlnQJSGlFKUaBVNHQJoFkdAsbq3kkrwv3V9lChoBmgJaA9DCEYKZeGraXJAlIaUUpRoFUvjaBZHQLG63sA/9pB1fZQoaAZoCWgPQwird7gd2udxQJSGlFKUaBVNDgFoFkdAsbr3gccU/XV9lChoBmgJaA9DCK9eRUaHTXJAlIaUUpRoFUvyaBZHQLG69UMG5c11fZQoaAZoCWgPQwiiJ2VSgwRzQJSGlFKUaBVNDAFoFkdAsbsn0dzXBnV9lChoBmgJaA9DCMCSq1h8/HJAlIaUUpRoFU0kAWgWR0CxuzGuTzNEdX2UKGgGaAloD0MIRG6GGzB3ckCUhpRSlGgVTSoBaBZHQLG7SjPv8ZV1fZQoaAZoCWgPQwj/lCpRNvhyQJSGlFKUaBVNJgFoFkdAsbtquvECNnV9lChoBmgJaA9DCCfeAZ50cXJAlIaUUpRoFU0HAWgWR0Cxu2x0Qsf8dX2UKGgGaAloD0MI8fJ0ruiycECUhpRSlGgVS/doFkdAsbt0FRpDeHV9lChoBmgJaA9DCGWO5V31YEtAlIaUUpRoFUunaBZHQLG7okY4yXV1fZQoaAZoCWgPQwg6BfnZCIZwQJSGlFKUaBVNAgFoFkdAsbvIlkYoAnV9lChoBmgJaA9DCByastOPMnBAlIaUUpRoFUvyaBZHQLG79X+l0o11fZQoaAZoCWgPQwgwSzs1165xQJSGlFKUaBVNJgFoFkdAsbwmb1AZ9HV9lChoBmgJaA9DCK+V0F0S4W9AlIaUUpRoFU0xAWgWR0CxvDlndweedX2UKGgGaAloD0MIEqW9wRceRUCUhpRSlGgVS4hoFkdAsbxhR3u/lHV9lChoBmgJaA9DCF5nQ/5ZGHBAlIaUUpRoFUvXaBZHQLG8av6TGHZ1fZQoaAZoCWgPQwgaUG9GTeFwQJSGlFKUaBVNCAFoFkdAsbyAecQRPHV9lChoBmgJaA9DCF/svfhiYHFAlIaUUpRoFU0NAWgWR0CxvLVIVdondX2UKGgGaAloD0MIxawXQ3lnckCUhpRSlGgVS+JoFkdAsbzEZIg/1XV9lChoBmgJaA9DCP7zNGBQ7nFAlIaUUpRoFU0YAWgWR0CxvOKij+JhdX2UKGgGaAloD0MIpHGo34V0c0CUhpRSlGgVTQsBaBZHQLG8/1UVBUt1fZQoaAZoCWgPQwhBvK5fsAxyQJSGlFKUaBVL92gWR0CxvQG4Vh1DdX2UKGgGaAloD0MI4fHtXQOscECUhpRSlGgVS+1oFkdAsb0SzlcQiHV9lChoBmgJaA9DCHtrYKuEAHJAlIaUUpRoFU0AAWgWR0Cxwg40l7dBdX2UKGgGaAloD0MIEVfO3tmQc0CUhpRSlGgVS/JoFkdAscJxZFG5MHV9lChoBmgJaA9DCIL+Qo8Yp3FAlIaUUpRoFU0CAWgWR0CxwtXvUjLTdX2UKGgGaAloD0MIhc/WwUFAcUCUhpRSlGgVTSEBaBZHQLHDAT6SDAd1fZQoaAZoCWgPQwglB+xq8kpxQJSGlFKUaBVNCAFoFkdAscMSYa5wwXV9lChoBmgJaA9DCDUIc7vXY3JAlIaUUpRoFUv6aBZHQLHDFiGWUr11fZQoaAZoCWgPQwhZw0XuaXFzQJSGlFKUaBVNXAFoFkdAscMYkqtoz3V9lChoBmgJaA9DCE1LrIxGP3FAlIaUUpRoFUvkaBZHQLHDI07bL2Z1fZQoaAZoCWgPQwhMGw5Lw9hwQJSGlFKUaBVNFgFoFkdAscMzFm4Aj3V9lChoBmgJaA9DCPvlkxWDLnFAlIaUUpRoFUvpaBZHQLHDOUZvUBp1fZQoaAZoCWgPQwj+nlinSpRwQJSGlFKUaBVL2mgWR0Cxw1h5ooNNdX2UKGgGaAloD0MIxNDq5AylcUCUhpRSlGgVS/5oFkdAscN0eT3Zf3V9lChoBmgJaA9DCEM3+wMl1HBAlIaUUpRoFUvxaBZHQLHDfscQyyl1fZQoaAZoCWgPQwgTgH9K1eZwQJSGlFKUaBVL22gWR0Cxw5D8UEgXdX2UKGgGaAloD0MIvjJv1fWzbkCUhpRSlGgVTSkBaBZHQLHD51qWTot1fZQoaAZoCWgPQwjo3sMlx0FvQJSGlFKUaBVL6GgWR0CxxAa1og3cdX2UKGgGaAloD0MIpUkp6HbRbkCUhpRSlGgVS9doFkdAscR4Fr2xp3V9lChoBmgJaA9DCFQAjGcQdHBAlIaUUpRoFUvhaBZHQLHEiNxEORV1fZQoaAZoCWgPQwinJVZG4wxwQJSGlFKUaBVL6GgWR0CxxJ0+1SfldX2UKGgGaAloD0MIgQhx5SxDcUCUhpRSlGgVTQABaBZHQLHEtxHoX9B1fZQoaAZoCWgPQwhy+Q/pt1VwQJSGlFKUaBVL7GgWR0CxxMx/qgRLdX2UKGgGaAloD0MINX9MaxMbckCUhpRSlGgVTQEBaBZHQLHE7dD6WPd1fZQoaAZoCWgPQwgyIHu9+yZwQJSGlFKUaBVL9WgWR0CxxTaCDmKZdX2UKGgGaAloD0MIfGMIAI5zcUCUhpRSlGgVTQABaBZHQLHFP9vCMxZ1fZQoaAZoCWgPQwgoLPGAsstVQJSGlFKUaBVN6ANoFkdAscVbCDVYp3V9lChoBmgJaA9DCGMIAI599HFAlIaUUpRoFU04AWgWR0CxxdpRO1v3dX2UKGgGaAloD0MIDTZ1HpXYc0CUhpRSlGgVTQgBaBZHQLHF6OVgQYl1fZQoaAZoCWgPQwgdcjPcgNVyQJSGlFKUaBVNCQFoFkdAscYSw9q1xHV9lChoBmgJaA9DCFtCPuhZ3XBAlIaUUpRoFUvTaBZHQLHGJsGgSOB1fZQoaAZoCWgPQwgAUps4+UVyQJSGlFKUaBVNuAFoFkdAscZR5rxiG3V9lChoBmgJaA9DCGvylNW0L3FAlIaUUpRoFUvIaBZHQLHGil/Yrax1fZQoaAZoCWgPQwjCEg8oG0lyQJSGlFKUaBVNswFoFkdAscaO3c580HV9lChoBmgJaA9DCK1LjdBPIXNAlIaUUpRoFU0KAWgWR0CxxqmMju8cdX2UKGgGaAloD0MIzO80mbFEcUCUhpRSlGgVS/ZoFkdAscbD3JxNqXV9lChoBmgJaA9DCLq/etx3tXJAlIaUUpRoFU02AWgWR0CxxxfuTibVdX2UKGgGaAloD0MIZaa0/hbYcECUhpRSlGgVS/BoFkdAsccq8zyjHnV9lChoBmgJaA9DCFis4SJ3nWlAlIaUUpRoFU2iA2gWR0Cxx0SgGr0bdX2UKGgGaAloD0MIQBU3brECcUCUhpRSlGgVTQ8BaBZHQLHHdUMoc711fZQoaAZoCWgPQwj1gk9zsltyQJSGlFKUaBVLyGgWR0Cxx3wnc+JQdX2UKGgGaAloD0MIpItNK8XjckCUhpRSlGgVTYEBaBZHQLHHx4uscQ11fZQoaAZoCWgPQwjMe5xpgpZwQJSGlFKUaBVL02gWR0Cxx9GxIJ7cdX2UKGgGaAloD0MId4TTgpcxc0CUhpRSlGgVTT8BaBZHQLHH5WMju8d1fZQoaAZoCWgPQwjS/3It2uBvQJSGlFKUaBVNEAFoFkdAscgLKZDzAnV9lChoBmgJaA9DCKAVGLL6sXFAlIaUUpRoFUvlaBZHQLHIZb5M10l1fZQoaAZoCWgPQwjwMy4cyCdxQJSGlFKUaBVNMAFoFkdAschrP/rB03V9lChoBmgJaA9DCH3ogvpWIXNAlIaUUpRoFUv8aBZHQLHIdHIIWxh1fZQoaAZoCWgPQwhJSKRt/CNxQJSGlFKUaBVL6GgWR0CxyISSeRPodX2UKGgGaAloD0MI4/+OqNDJcECUhpRSlGgVS85oFkdAscidkNFz+3V9lChoBmgJaA9DCLO3lPOFgHJAlIaUUpRoFU0jAWgWR0CxyL+ctoSMdX2UKGgGaAloD0MIqwfMQyYLc0CUhpRSlGgVS9FoFkdAscjF6NVBEHV9lChoBmgJaA9DCENU4c/wf21AlIaUUpRoFUvlaBZHQLHJFrpaA4J1fZQoaAZoCWgPQwiZZyWtOLZxQJSGlFKUaBVLx2gWR0CxyT+n2qT9dX2UKGgGaAloD0MIm8k321ydbECUhpRSlGgVTSgBaBZHQLHJVWVNYbN1fZQoaAZoCWgPQwiFl+DUB1huQJSGlFKUaBVNHwFoFkdAscmNflZHNHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1720, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTEyLTljMTVmNmJhYTc4OT6UjAg8bGFtYmRhPpRLDUMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}