--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: Bangla-Twoclass-Sentiment-Analyzer results: [] --- # Bangla-Twoclass-Sentiment-Analyzer This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1624 - F1: 0.9642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1800 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.34 | 200 | 0.3384 | 0.8842 | | No log | 0.68 | 400 | 0.2352 | 0.9358 | | 0.3357 | 1.02 | 600 | 0.1838 | 0.9458 | | 0.3357 | 1.36 | 800 | 0.1768 | 0.9520 | | 0.1794 | 1.69 | 1000 | 0.1650 | 0.9541 | | 0.1794 | 2.03 | 1200 | 0.1629 | 0.9609 | | 0.1794 | 2.37 | 1400 | 0.2278 | 0.9566 | | 0.1305 | 2.71 | 1600 | 0.1633 | 0.9634 | | 0.1305 | 3.05 | 1800 | 0.1624 | 0.9642 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3